Search results
Results from the WOW.Com Content Network
Ion-exchange resin beads. An ion-exchange resin or ion-exchange polymer is a resin or polymer that acts as a medium for ion exchange, that is also known as an ionex. [1] It is an insoluble matrix (or support structure) normally in the form of small (0.25–1.43 mm radius) microbeads, usually white or yellowish, fabricated from an organic polymer substrate.
The resin is a weak exchanger because it is only partially ionized over most pH values, and an efficient separation with DEAE-C chromatography requires a specific, narrow pH range. [ 8 ] Cellulose, dextran, agarose, and other insoluble complexes are unaffected because they compose inert matrices, hence why they are so often derivatized with ...
The second application example for the MCSGP prototype is the separation of three MAb variants using a preparative weak cation-exchange resin. Although the intermediately eluting MAb variant can only be obtained with 80% purity at recoveries close to zero in a batch chromatographic process, the MCSGP process can provide 90% purity at 93% yield.
There are also amphoteric exchangers that are able to exchange both cations and anions simultaneously. However, the simultaneous exchange of cations and anions is often performed in mixed beds, which contain a mixture of anion- and cation-exchange resins, or passing the solution through several different ion-exchange materials. Ion exchanger.
Chelating resins have the same bead form and polymer matrix as usual ion exchangers. Their main use is for pre-concentration of metal ions in a dilute solution. Chelating ion-exchange resins are used for brine decalcification in the chlor-alkali industry, the removal of boron from potable water, and the recovery of precious metals in solutions.
As described by NSF/ANSI Standard 44, [8] ion-exchange devices reduce the hardness by replacing magnesium and calcium (Mg 2+ and Ca 2+) with sodium or potassium ions (Na + and K +)." Ion-exchange resins are organic polymers containing anionic functional groups to which the divalent cations (Ca 2+) bind more strongly than monovalent cations (Na +).
An ion-exchange membrane is generally made of organic or inorganic polymer with charged (ionic) side groups, such as ion-exchange resins. Anion-exchange membranes contain fixed cationic groups with predominantly mobile anions; because anions are the majority species, most of the conductivity is due to anion transport. The reverse holds for ...
[11] In 2009, Geng’s group first achieved online two-dimensional (2D) separation of intact proteins using a single column possessing separation features of weak-cation exchange chromatography (WCX) and HIC (termed as two-dimensional liquid chromatography using a single column, (2D-LC-1C).