Search results
Results from the WOW.Com Content Network
A block-nested loop (BNL) is an algorithm used to join two relations in a relational database. [ 1 ] This algorithm [ 2 ] is a variation of the simple nested loop join and joins two relations R {\displaystyle R} and S {\displaystyle S} (the "outer" and "inner" join operands, respectively).
In other databases, alternatives to express the same query (other queries that return the same results) can be tried. Some query tools can generate embedded hints in the query, for use by the optimizer. Some databases - like Oracle - provide a plan table for query tuning. This plan table will return the cost and time for executing a query.
algorithm nested_loop_join is for each tuple r in R do for each tuple s in S do if r and s satisfy the join condition then yield tuple <r,s> This algorithm will involve n r *b s + b r block transfers and n r +b r seeks, where b r and b s are number of blocks in relations R and S respectively, and n r is the number of tuples in relation R.
Many join-algorithms treat their inputs differently. One can refer to the inputs to a join as the "outer" and "inner" join operands, or "left" and "right", respectively. In the case of nested loops, for example, the database system will scan the entire inner relation for each row of the outer relation.
In a SQL database query, a correlated subquery (also known as a synchronized subquery) is a subquery (a query nested inside another query) that uses values from the outer query. This can have major impact on performance because the correlated subquery might get recomputed every time for each row of the outer query is processed.
The following example of a SELECT query returns a list of expensive books. The query retrieves all rows from the Book table in which the price column contains a value greater than 100.00. The result is sorted in ascending order by title. The asterisk (*) in the select list indicates that all columns of the Book table should be included in the ...
In SQL:1999 a recursive (CTE) query may appear anywhere a query is allowed. It's possible, for example, to name the result using CREATE [ RECURSIVE ] VIEW . [ 16 ] Using a CTE inside an INSERT INTO , one can populate a table with data generated from a recursive query; random data generation is possible using this technique without using any ...
The join, for example, is logically the same, although it can be implemented by different algorithms like a Nested loop join or a Sort-merge join. Notice, these algorithms also strongly depend on the used stream and processing model. Finally, the query is available as a physical query plan.