Search results
Results from the WOW.Com Content Network
In geometry, a polygon is traditionally a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain. These segments are called its edges or sides , and the points where two of the edges meet are the polygon's vertices (singular: vertex) or corners .
Megagon - 1,000,000 sides; Star polygon – there are multiple types of stars Pentagram - star polygon with 5 sides; Hexagram – star polygon with 6 sides Star of David (example) Heptagram – star polygon with 7 sides; Octagram – star polygon with 8 sides Star of Lakshmi (example) Enneagram - star polygon with 9 sides; Decagram - star ...
In geometry, a polygon (/ ˈ p ɒ l ɪ ɡ ɒ n /) is a plane figure made up of line segments connected to form a closed polygonal chain. The segments of a closed polygonal chain are called its edges or sides. The points where two edges meet are the polygon's vertices or corners. An n-gon is a polygon with n sides; for example, a triangle is a 3 ...
In geometry, a bigon, [1] digon, or a 2-gon, is a polygon with two sides and two vertices.Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved; however, it can be easily visualised in elliptic space.
In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words quadri, a variant of four, and latus, meaning "side".
In geometry, a hendecagon (also undecagon [1] [2] or endecagon [3]) or 11-gon is an eleven-sided polygon. (The name hendecagon , from Greek hendeka "eleven" and –gon "corner", is often preferred to the hybrid undecagon , whose first part is formed from Latin undecim "eleven".
A regular polygon with n sides can be constructed with ruler, compass, and angle trisector if and only if =, where r, s, k ≥ 0 and where the p i are distinct Pierpont primes greater than 3 (primes of the form +). [8]: Thm. 2 These polygons are exactly the regular polygons that can be constructed with Conic section, and the regular polygons ...
In mathematics, a polygonal number is a number that counts dots arranged in the shape of a regular polygon [1]: 2-3 . These are one type of 2-dimensional figurate numbers . Polygonal numbers were first studied during the 6th century BC by the Ancient Greeks, who investigated and discussed properties of oblong , triangular , and square numbers ...