Search results
Results from the WOW.Com Content Network
GPE is a model equation for the ground-state single-particle wavefunction in a Bose–Einstein condensate. It is similar in form to the Ginzburg–Landau equation and is sometimes referred to as the nonlinear Schrödinger equation.
The adjective kinetic has its roots in the Greek word κίνησις kinesis, meaning "motion".The dichotomy between kinetic energy and potential energy can be traced back to Aristotle's concepts of actuality and potentiality.
The Gross-Pitaevskii equation (GPE) provides a relatively good description of the behavior of atomic BEC's. However, GPE does not take into account the temperature dependence of dynamical variables, and is therefore valid only for =. It is not applicable, for example, for the condensates of excitons, magnons and photons, where the critical ...
In fluid dynamics, turbulence kinetic energy (TKE) is the mean kinetic energy per unit mass associated with eddies in turbulent flow.Physically, the turbulence kinetic energy is characterized by measured root-mean-square (RMS) velocity fluctuations.
For two pairwise interacting point particles, the gravitational potential energy is the work that an outside agent must do in order to quasi-statically bring the masses together (which is therefore, exactly opposite the work done by the gravitational field on the masses): = = where is the displacement vector of the mass, is gravitational force acting on it and denotes scalar product.
The exact k-ε equations contain many unknown and unmeasurable terms. For a much more practical approach, the standard k-ε turbulence model (Launder and Spalding, 1974 [3]) is used which is based on our best understanding of the relevant processes, thus minimizing unknowns and presenting a set of equations which can be applied to a large number of turbulent applications.
Energy transformations in the universe over time are usually characterized by various kinds of energy, which have been available since the Big Bang, later being "released" (that is, transformed to more active types of energy such as kinetic or radiant energy) by a triggering mechanism.
We can calculate the minimum energy that the moving proton must have in order to create a pion. Transforming into the ZMF (Zero Momentum Frame or Center of Mass Frame) and assuming the outgoing particles have no KE (kinetic energy) when viewed in the ZMF, the conservation of energy equation is: