Search results
Results from the WOW.Com Content Network
A B-tree insertion example with each iteration. The nodes of this B-tree have at most 3 children (Knuth order 3). All insertions start at a leaf node. To insert a new element, search the tree to find the leaf node where the new element should be added. Insert the new element into that node with the following steps:
The left figure below shows a binary decision tree (the reduction rules are not applied), and a truth table, each representing the function (,,).In the tree on the left, the value of the function can be determined for a given variable assignment by following a path down the graph to a terminal.
The amortized times of all operations on Fibonacci heaps is constant, except delete-min. [ 1 ] [ 2 ] Deleting an element (most often used in the special case of deleting the minimum element) works in O ( log n ) {\displaystyle O(\log n)} amortized time, where n {\displaystyle n} is the size of the heap. [ 2 ]
If a large proportion of the elements of the tree are deleted, then the tree will become much larger than the current size of the stored elements, and the performance of other operations will be adversely affected by the deleted elements. When this is undesirable, the following algorithm can be followed to remove a value from the 2–3–4 tree:
To turn a regular search tree into an order statistic tree, the nodes of the tree need to store one additional value, which is the size of the subtree rooted at that node (i.e., the number of nodes below it). All operations that modify the tree must adjust this information to preserve the invariant that size[x] = size[left[x]] + size[right[x]] + 1
Many programs using associative arrays will need to store that data in a more permanent form, such as a computer file. A common solution to this problem is a generalized concept known as archiving or serialization , which produces a text or binary representation of the original objects that can be written directly to a file.
Throughout insertion/deletion operations, the K-D-B-tree maintains a certain set of properties: The graph is a multi-way tree. Region pages always point to child pages, and can not be empty. Point pages are the leaf nodes of the tree. Like a B-tree, the path length to the leaves of the tree is the same for all queries.
A B+ tree consists of a root, internal nodes and leaves. [1] The root may be either a leaf or a node with two or more children. A B+ tree can be viewed as a B-tree in which each node contains only keys (not key–value pairs), and to which an additional level is added at the bottom with linked leaves.