Search results
Results from the WOW.Com Content Network
The terms "distribution" and "family" are often used loosely: Specifically, an exponential family is a set of distributions, where the specific distribution varies with the parameter; [a] however, a parametric family of distributions is often referred to as "a distribution" (like "the normal distribution", meaning "the family of normal distributions"), and the set of all exponential families ...
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
Download as PDF; Printable version; ... Pages in category "Exponential family distributions" ... Kaniadakis exponential distribution;
For example, the Bernoulli distribution is a binomial distribution with n = 1 trial, the exponential distribution is a gamma distribution with shape parameter α = 1 (or k = 1 ), and the geometric distribution is a special case of the negative binomial distribution. Some exponential family distributions are not NEF.
The Dagum distribution; The exponential distribution, which describes the time between consecutive rare random events in a process with no memory. The exponential-logarithmic distribution; The F-distribution, which is the distribution of the ratio of two (normalized) chi-squared-distributed random variables, used in the analysis of variance.
Since the functions are the sufficient statistics of the Dirichlet distribution, the exponential family differential identities can be used to get an analytic expression for the expectation of (see equation (2.62) in [12]) and its associated covariance matrix:
The gamma distribution is a two-parameter exponential family with natural parameters α − 1 and −1/θ (equivalently, α − 1 and −λ), and natural statistics X and ln X. If the shape parameter α is held fixed, the resulting one-parameter family of distributions is a natural exponential family.
The inverse Gaussian distribution is a two-parameter exponential family with natural parameters −λ/(2μ 2) and −λ/2, and natural statistics X and 1/X. For λ > 0 {\displaystyle \lambda >0} fixed, it is also a single-parameter natural exponential family distribution [ 2 ] where the base distribution has density