Search results
Results from the WOW.Com Content Network
Small number of rows The cost of full table scan is less than index range scan due to small table. When query processed SELECT COUNT(*), nulls existed in the column The query is counting the number of null columns in a typical index. However, SELECT COUNT(*) can't count the number of null columns. The query is unselective The number of return ...
The following example of a SELECT query returns a list of expensive books. The query retrieves all rows from the Book table in which the price column contains a value greater than 100.00. The result is sorted in ascending order by title. The asterisk (*) in the select list indicates that all columns of the Book table should be included in the ...
In situations where the number of unique values of a column is far less than the number of rows in the table, column-oriented storage allow significant savings in space through data compression. Columnar storage also allows fast execution of range queries (e.g., show all records where a particular column is between X and Y, or less than X.)
For example, AVERAGE=SUM/COUNT and RANGE=MAX−MIN. In the MapReduce framework, these steps are known as InitialReduce (value on individual record/singleton set), Combine (binary merge on two aggregations), and FinalReduce (final function on auxiliary values), [ 5 ] and moving decomposable aggregation before the Shuffle phase is known as an ...
Data Analysis Expressions (DAX) is the native formula and query language for Microsoft PowerPivot, Power BI Desktop and SQL Server Analysis Services (SSAS) Tabular models. DAX includes some of the functions that are used in Excel formulas with additional functions that are designed to work with relational data and perform dynamic aggregation.
A common table expression, or CTE, (in SQL) is a temporary named result set, derived from a simple query and defined within the execution scope of a SELECT, INSERT, UPDATE, or DELETE statement. CTEs can be thought of as alternatives to derived tables ( subquery ), views , and inline user-defined functions.
The MultiDimensional eXpressions (MDX) language provides a specialized syntax for querying and manipulating the multidimensional data stored in OLAP cubes. [1] While it is possible to translate some of these into traditional SQL, it would frequently require the synthesis of clumsy SQL expressions even for very simple MDX expressions.
WHERE is taken into account at an earlier stage of a query execution, filtering the rows read from the tables. If a query contains GROUP BY, rows from the tables are grouped and aggregated. After the aggregating operation, HAVING is applied, filtering out the rows that don't match the specified conditions. Therefore, WHERE applies to data read ...