Search results
Results from the WOW.Com Content Network
In green, the point with radial coordinate 3 and angular coordinate 60 degrees or (3, 60°). In blue, the point (4, 210°). In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction.
The radial acceleration (perpendicular to direction of motion) is given by = =. It is directed towards the center of the rotational motion, and is often called the centripetal acceleration . The angular acceleration is caused by the torque , which can have a positive or negative value in accordance with the convention of positive and negative ...
the radial distance r along the line connecting the point to a fixed point called the origin; the polar angle θ between this radial line and a given polar axis; [a] and; the azimuthal angle φ, which is the angle of rotation of the radial line around the polar axis. [b] (See graphic regarding the "physics convention".)
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
The equations of motion describe the movement of the center of mass of a body, which remains at a constant distance from the axis of rotation. In circular motion, the distance between the body and a fixed point on its surface remains the same, i.e., the body is assumed rigid.
The azimuth is the angle formed between a reference direction (in this example north) and a line from the observer to a point of interest projected on the same plane as the reference direction orthogonal to the zenith. An azimuth (/ ˈ æ z ə m ə θ / ⓘ; from Arabic: اَلسُّمُوت, romanized: as-sumūt, lit.
In geometry, the orientation, attitude, bearing, direction, or angular position of an object – such as a line, plane or rigid body – is part of the description of how it is placed in the space it occupies. [1] More specifically, it refers to the imaginary rotation that is needed to move the object from a reference placement to its current ...
The radial speed or range rate is the temporal rate of the distance or range between the two points. It is a signed scalar quantity, formulated as the scalar projection of the relative velocity vector onto the LOS direction. Equivalently, radial speed equals the norm of the radial velocity, modulo the sign. [a]