Search results
Results from the WOW.Com Content Network
Can graphs of bounded clique-width be recognized in polynomial time? [1] Can one find a simple closed quasigeodesic on a convex polyhedron in polynomial time? [2] Can a simultaneous embedding with fixed edges for two given graphs be found in polynomial time? [3] Can the square-root sum problem be solved in polynomial time in the Turing machine ...
an infeasible problem is one for which no set of values for the choice variables satisfies all the constraints. That is, the constraints are mutually contradictory, and no solution exists; the feasible set is the empty set. unbounded problem is a feasible problem for which the objective function can be made to be better than any given finite ...
The aim of local search is that of finding an assignment of minimal cost, which is a solution if any exists. Point A is not a solution, but no local move from there decreases cost. However, a solution exists at point B. Two classes of local search algorithms exist. The first one is that of greedy or non-randomized algorithms. These algorithms ...
For example, sometimes it is desirable to present solutions which are less than mathematically optimal. To obtain a ranked list of less-than-optimal solutions, the optimal solution is first calculated. A single edge appearing in the optimal solution is removed from the graph, and the optimum solution to this new graph is calculated.
For example, hill climbing can be applied to the travelling salesman problem. It is easy to find an initial solution that visits all the cities but will likely be very poor compared to the optimal solution. The algorithm starts with such a solution and makes small improvements to it, such as switching the order in which two cities are visited.
A* (pronounced "A-star") is a graph traversal and pathfinding algorithm that is used in many fields of computer science due to its completeness, optimality, and optimal efficiency. [1]
Solution of a travelling salesman problem: the black line shows the shortest possible loop that connects every red dot. In the theory of computational complexity, the travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the ...
For example, to solve a system of n equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires n(n + 1)/2 divisions, (2n 3 + 3n 2 − 5n)/6 multiplications, and (2n 3 + 3n 2 − 5n)/6 subtractions, [10] for a total of approximately 2n 3 /3 operations.