Search results
Results from the WOW.Com Content Network
This triple repetition code is a Hamming code with m = 2, since there are two parity bits, and 2 2 − 2 − 1 = 1 data bit. Such codes cannot correctly repair all errors, however. In our example, if the channel flips two bits and the receiver gets 001, the system will detect the error, but conclude that the original bit is 0, which is incorrect.
Note that bit/s is a more widespread unit of measurement for the information rate, implying that it is synonymous with net bit rate or useful bit rate exclusive of error-correction codes. See also [ edit ]
The codewords in a linear block code are blocks of symbols that are encoded using more symbols than the original value to be sent. [2] A linear code of length n transmits blocks containing n symbols. For example, the [7,4,3] Hamming code is a linear binary code which represents 4-bit messages using 7-bit codewords. Two distinct codewords differ ...
The minimum Hamming distance of a linear code is equal to the minimum weight of a nonzero codeword, ... This page was last edited on 12 July 2024, at 19:28 (UTC).
A perfect code may be interpreted as one in which the balls of Hamming radius t centered on codewords exactly fill out the space (t is the covering radius = packing radius). A quasi-perfect code is one in which the balls of Hamming radius t centered on codewords are disjoint and the balls of radius t+1 cover the space, possibly with some ...
As mentioned above, there are a vast number of error-correcting codes that are actually block codes. The first error-correcting code was the Hamming(7,4) code, developed by Richard W. Hamming in 1950. This code transforms a message consisting of 4 bits into a codeword of 7 bits by adding 3 parity bits. Hence this code is a block code.
Since the source is only 4 bits then there are only 16 possible transmitted words. Included is the eight-bit value if an extra parity bit is used (see Hamming(7,4) code with an additional parity bit). (The data bits are shown in blue; the parity bits are shown in red; and the extra parity bit shown in green.)
Since the Walsh–Hadamard code is a linear code, the distance is equal to the minimum Hamming weight among all of its non-zero codewords. All non-zero codewords of the Walsh–Hadamard code have a Hamming weight of exactly 2 k − 1 {\displaystyle 2^{k-1}} by the following argument.