enow.com Web Search

  1. Ad

    related to: graphing rational functions pdf

Search results

  1. Results from the WOW.Com Content Network
  2. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    A natural follow-up question one might ask is if there is a function which is continuous on the rational numbers and discontinuous on the irrational numbers. This turns out to be impossible. The set of discontinuities of any function must be an F σ set. If such a function existed, then the irrationals would be an F σ set.

  3. Rational function - Wikipedia

    en.wikipedia.org/wiki/Rational_function

    The degree of the graph of a rational function is not the degree as defined above: it is the maximum of the degree of the numerator and one plus the degree of the denominator. In some contexts, such as in asymptotic analysis, the degree of a rational function is the difference between the degrees of the numerator and the denominator.

  4. List of mathematical functions - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_functions

    Dirichlet function: is an indicator function that matches 1 to rational numbers and 0 to irrationals. It is nowhere continuous. Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function.

  5. Polynomial and rational function modeling - Wikipedia

    en.wikipedia.org/wiki/Polynomial_and_rational...

    Rational functions can be either finite or infinite for finite values, or finite or infinite for infinite x values. Thus, rational functions can easily be incorporated into a rational function model. Rational function models can often be used to model complicated structure with a fairly low degree in both the numerator and denominator.

  6. Graph of a function - Wikipedia

    en.wikipedia.org/wiki/Graph_of_a_function

    Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.

  7. Minkowski's question-mark function - Wikipedia

    en.wikipedia.org/wiki/Minkowski's_question-mark...

    Download as PDF; Printable version ... It also maps rational numbers to dyadic ... The graph of Minkowski question mark function is a special case of fractal curves ...

  8. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    The division of one polynomial by another is not typically a polynomial. Instead, such ratios are a more general family of objects, called rational fractions, rational expressions, or rational functions, depending on context. [16] This is analogous to the fact that the ratio of two integers is a rational number, not necessarily an integer.

  9. Chebyshev rational functions - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_rational_functions

    Plot of the absolute value of the seventh-order (n = 7) Chebyshev rational function for 0.01 ≤ x ≤ 100. Note that there are n zeroes arranged symmetrically about x = 1 and if x 0 is a zero, then ⁠ 1 / x 0 ⁠ is a zero as well. The maximum value between the zeros is unity. These properties hold for all orders. Defining:

  1. Ad

    related to: graphing rational functions pdf