enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lattice (order) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(order)

    A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).

  3. Lattice model (physics) - Wikipedia

    en.wikipedia.org/wiki/Lattice_model_(physics)

    Physical lattice models frequently occur as an approximation to a continuum theory, either to give an ultraviolet cutoff to the theory to prevent divergences or to perform numerical computations. An example of a continuum theory that is widely studied by lattice models is the QCD lattice model, a discretization of quantum chromodynamics.

  4. Modular lattice - Wikipedia

    en.wikipedia.org/wiki/Modular_lattice

    A modular lattice of order dimension 2. As with all finite 2-dimensional lattices, its Hasse diagram is an st-planar graph.. In the branch of mathematics called order theory, a modular lattice is a lattice that satisfies the following self-dual condition,

  5. Introduction to Lattices and Order - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_Lattices...

    Likewise, although Jon Cohen has some quibbles with the ordering and selection of topics (particularly the inclusion of congruences at the expense of a category-theoretic view of the subject), he concludes that the book is "a wonderful and accessible introduction to lattice theory, of equal interest to both computer scientists and mathematicians".

  6. Birkhoff's representation theorem - Wikipedia

    en.wikipedia.org/wiki/Birkhoff's_representation...

    This is about lattice theory.For other similarly named results, see Birkhoff's theorem (disambiguation).. In mathematics, Birkhoff's representation theorem for distributive lattices states that the elements of any finite distributive lattice can be represented as finite sets, in such a way that the lattice operations correspond to unions and intersections of sets.

  7. Join and meet - Wikipedia

    en.wikipedia.org/wiki/Join_and_meet

    A partially ordered set that is both a join-semilattice and a meet-semilattice is a lattice. A lattice in which every subset, not just every pair, possesses a meet and a join is a complete lattice. It is also possible to define a partial lattice, in which not all pairs have a meet or join but the operations (when defined) satisfy certain axioms ...

  8. Dedekind–MacNeille completion - Wikipedia

    en.wikipedia.org/wiki/Dedekind–MacNeille...

    The result is a distributive lattice and is used in Birkhoff's representation theorem. However, it may have many more elements than are needed to form a completion of S. [5] Among all possible lattice completions, the Dedekind–MacNeille completion is the smallest complete lattice with S embedded in it. [6]

  9. Lattice (group) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(group)

    In geometry and group theory, a lattice in the real coordinate space is an infinite set of points in this space with the properties that coordinate-wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point.