Search results
Results from the WOW.Com Content Network
In genetics, a chiasma (pl.: chiasmata) is the point of contact, the physical link, between two (non-sister) chromatids belonging to homologous chromosomes. At a given chiasma, an exchange of genetic material can occur between both chromatids, what is called a chromosomal crossover , but this is much more frequent during meiosis than mitosis ...
The structure, visible by microscopy, is called a bivalent. [5] Resolution of the DNA recombination intermediate into a crossover exchanges DNA segments between the two homologous chromosomes at a site called a chiasma (plural: chiasmata). This physical strand exchange and the cohesion between the sister chromatids along each chromosome ensure ...
Sites of crossing over entangle together, effectively overlapping, making chiasmata clearly visible. Other than this observation, the rest of the stage closely resembles prometaphase of mitosis; the nucleoli disappear, the nuclear membrane disintegrates into vesicles, and the meiotic spindle begins to form.
Chromatin "sheaths" visible around each SC. Bottom: Two tomato SCs with the chromatin removed, allowing kinetochores ("ball-like" structures) at centromeres to be revealed. The synaptonemal complex ( SC ) is a protein structure that forms between homologous chromosomes (two pairs of sister chromatids ) during meiosis and is thought to mediate ...
Lampbrush chromosomes are clearly visible even in the light microscope, where they are seen to be organized into a series of chromomeres with large chromatin loops extended laterally. Continuous RNA transcription is required to maintain typical chromomere-loop structure of lampbrush chromosomes.
Achiasmate meiosis refers to meiosis without chiasmata, which are structures that are necessary for recombination to occur and that usually aid in the segregation of non-sister homologs. [1] The pachytene stage of prophase I typically results in the formation of chiasmata between homologous non-sister chromatids in the tetrad chromosomes that ...
There are interconnections between these two pathways—class I crossovers can compensate for the loss of class II pathway. In MUS81 knockout mice, class I crossovers are elevated, while total crossover counts at chiasmata are normal. However, the mechanisms underlining this crosstalk are not well understood.
The pachytene stage (/ˈpækɪtiːn/ PAK-i-teen; from Greek words meaning "thick threads". [1]: 27 ), also known as pachynema, is the third stage of prophase I during meiosis, the specialized cell division that reduces chromosome number by half to produce haploid gametes.