enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    Any definition of expected value may be extended to define an expected value of a multidimensional random variable, i.e. a random vector X. It is defined component by component, as E[X] i = E[X i]. Similarly, one may define the expected value of a random matrix X with components X ij by E[X] ij = E[X ij].

  3. Law of the unconscious statistician - Wikipedia

    en.wikipedia.org/wiki/Law_of_the_unconscious...

    In probability theory and statistics, the law of the unconscious statistician, or LOTUS, is a theorem which expresses the expected value of a function g(X) of a random variable X in terms of g and the probability distribution of X. The form of the law depends on the type of random variable X in question.

  4. Expected return - Wikipedia

    en.wikipedia.org/wiki/Expected_return

    The expected return (or expected gain) on a financial investment is the expected value of its return (of the profit on the investment). It is a measure of the center of the distribution of the random variable that is the return. [1] It is calculated by using the following formula: [] = = where

  5. Algebra of random variables - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_random_variables

    List of convolutions of probability distributions – the probability measure of the sum of independent random variables is the convolution of their probability measures. Law of total expectation; Law of total variance; Law of total covariance; Law of total cumulance; Taylor expansions for the moments of functions of random variables; Delta method

  6. Wald's equation - Wikipedia

    en.wikipedia.org/wiki/Wald's_equation

    In probability theory, Wald's equation, Wald's identity [1] or Wald's lemma [2] is an important identity that simplifies the calculation of the expected value of the sum of a random number of random quantities.

  7. Conditional expectation - Wikipedia

    en.wikipedia.org/wiki/Conditional_expectation

    In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of ...

  8. Campbell's theorem (probability) - Wikipedia

    en.wikipedia.org/wiki/Campbell's_theorem...

    In probability theory and statistics, Campbell's theorem or the Campbell–Hardy theorem is either a particular equation or set of results relating to the expectation of a function summed over a point process to an integral involving the mean measure of the point process, which allows for the calculation of expected value and variance of the random sum.

  9. Law of total expectation - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_expectation

    The proposition in probability theory known as the law of total expectation, [1] the law of iterated expectations [2] (LIE), Adam's law, [3] the tower rule, [4] and the smoothing theorem, [5] among other names, states that if is a random variable whose expected value ⁡ is defined, and is any random variable on the same probability space, then