enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    The problem of learning an optimal decision tree is known to be NP-complete under several aspects of optimality and even for simple concepts. [34] [35] Consequently, practical decision-tree learning algorithms are based on heuristics such as the greedy algorithm where locally optimal decisions are made at each node. Such algorithms cannot ...

  3. C4.5 algorithm - Wikipedia

    en.wikipedia.org/wiki/C4.5_algorithm

    In 2011, authors of the Weka machine learning software described the C4.5 algorithm as "a landmark decision tree program that is probably the machine learning workhorse most widely used in practice to date". [2] It became quite popular after ranking #1 in the Top 10 Algorithms in Data Mining pre-eminent paper published by Springer LNCS in 2008. [3]

  4. ID3 algorithm - Wikipedia

    en.wikipedia.org/wiki/ID3_algorithm

    In decision tree learning, ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan [1] used to generate a decision tree from a dataset. ID3 is the precursor to the C4.5 algorithm, and is typically used in the machine learning and natural language processing domains.

  5. Decision tree - Wikipedia

    en.wikipedia.org/wiki/Decision_tree

    The node splitting function used can have an impact on improving the accuracy of the decision tree. For example, using the information-gain function may yield better results than using the phi function. The phi function is known as a measure of “goodness” of a candidate split at a node in the decision tree.

  6. LightGBM - Wikipedia

    en.wikipedia.org/wiki/LightGBM

    LightGBM, short for Light Gradient-Boosting Machine, is a free and open-source distributed gradient-boosting framework for machine learning, originally developed by Microsoft. [4] [5] It is based on decision tree algorithms and used for ranking, classification and other machine learning tasks. The development focus is on performance and ...

  7. Decision tree model - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_model

    Decision Tree Model. In computational complexity theory, the decision tree model is the model of computation in which an algorithm can be considered to be a decision tree, i.e. a sequence of queries or tests that are done adaptively, so the outcome of previous tests can influence the tests performed next.

  8. Alternating decision tree - Wikipedia

    en.wikipedia.org/wiki/Alternating_decision_tree

    An alternating decision tree (ADTree) is a machine learning method for classification. It generalizes decision trees and has connections to boosting . An ADTree consists of an alternation of decision nodes, which specify a predicate condition, and prediction nodes, which contain a single number.

  9. Greedy algorithm - Wikipedia

    en.wikipedia.org/wiki/Greedy_algorithm

    In decision tree learning, greedy algorithms are commonly used, however they are not guaranteed to find the optimal solution. One popular such algorithm is the ID3 algorithm for decision tree construction. Dijkstra's algorithm and the related A* search algorithm are verifiably optimal greedy algorithms for graph search and shortest path finding.