Search results
Results from the WOW.Com Content Network
Due to the polar nature of the water molecule itself, other polar molecules are generally able to dissolve in water. Most nonpolar molecules are water-insoluble ( hydrophobic ) at room temperature. Many nonpolar organic solvents , such as turpentine , are able to dissolve nonpolar substances.
Polar solvents can be used to dissolve inorganic or ionic compounds such as salts. The conductivity of a solution depends on the solvation of its ions. Nonpolar solvents cannot solvate ions, and ions will be found as ion pairs. Hydrogen bonding among solvent and solute molecules depends on the ability of each to accept H-bonds, donate H-bonds ...
A weak electrolyte is a substance whose solute exists in solution mostly in the form of molecules (which are said to be "undissociated"), with only a small fraction in the form of ions. Simply because a substance does not readily dissolve does not make it a weak electrolyte. Acetic acid (CH 3 COOH) and ammonium (NH + 4) are good examples ...
This arises from the fact that polar solvents stabilize the formation of the carbocation intermediate to a greater extent than the non-polar-solvent conditions. This is apparent in the ΔE a, ΔΔG ‡ activation. On the right is an S N 2 reaction coordinate diagram. Note the decreased ΔG ‡ activation for the non-polar-solvent reaction ...
The chemical energy released in the formation of non-covalent interactions is typically on the order of 1–5 kcal/mol (1000–5000 calories per 6.02 × 10 23 molecules). [2] Non-covalent interactions can be classified into different categories, such as electrostatic, π-effects, van der Waals forces, and hydrophobic effects. [3] [2]
The hydrophobic effect was found to be entropy-driven at room temperature because of the reduced mobility of water molecules in the solvation shell of the non-polar solute; however, the enthalpic component of transfer energy was found to be favorable, meaning it strengthened water-water hydrogen bonds in the solvation shell due to the reduced ...
The essential difference between the three types is the closeness with which the ions approach each other: fully solvated > solvent-shared > contact. With fully solvated and solvent-shared ion pairs the interaction is primarily electrostatic, but in a contact ion pair some covalent character in the bond between cation and anion is also present.
Lipophilicity (from Greek λίπος "fat" and φίλος "friendly") is the ability of a chemical compound to dissolve in fats, oils, lipids, and non-polar solvents such as hexane or toluene. Such compounds are called lipophilic (translated as "fat-loving" or "fat-liking" [1] [2]). Such non-polar solvents are themselves lipophilic, and the ...