Search results
Results from the WOW.Com Content Network
Firstly, as the air enters the lungs, it is humidified by the upper airway and thus the partial pressure of water vapour (47 mmHg) reduces the oxygen partial pressure to about 150 mmHg. The rest of the difference is due to the continual uptake of oxygen by the pulmonary capillaries , and the continual diffusion of CO 2 out of the capillaries ...
The consequence is that the partial pressure of CO 2 (P CO 2) does not change from rest going into exercise. During very short-term bouts of intense exercise the release of lactic acid into the blood by the exercising muscles causes a fall in the blood plasma pH, independently of the rise in the P CO 2, and this will stimulate pulmonary ...
Pulmonary compliance is calculated using the following equation, where ΔV is the change in volume, and ΔP is the change in pleural pressure: = For example, if a patient inhales 500 mL of air from a spirometer with an intrapleural pressure before inspiration of −5 cm H 2 O and −10 cm H 2 O at the end of inspiration.
The alveolar air pressure is therefore always close to atmospheric air pressure (about 100 kPa at sea level) at rest, with the pressure gradients that cause air to move in and out of the lungs during breathing rarely exceeding 2–3 kPa. [8] [9] Other muscles that can be involved in inhalation include: [10] External intercostal muscles; Scalene ...
Isobaric counterdiffusion (ICD) is the diffusion of gases in opposite directions caused by a change in the composition of the external ambient gas or breathing gas without change in the ambient pressure. During decompression after a dive this can occur when a change is made to the breathing gas, or when the diver moves into a gas filled ...
In respiratory physiology, the oxygen cascade describes the flow of oxygen from air to mitochondria, where it is consumed in aerobic respiration to release energy. [1] Oxygen flows from areas with high partial pressure of oxygen (PO 2, also known as oxygen tension) to areas of lower PO 2.
This slight negative pressure is enough to move 500 ml of air into the lungs in the 2 seconds required for inspiration. At the end of inspiration, the alveolar pressure returns to atmospheric pressure (zero cmH 2 O). [2] During exhalation, the opposite change occurs. The lung alveoli collapse before air is expelled from them.
In fluid dynamics, the Hagen–Poiseuille equation is a physical law that gives the pressure drop in a fluid flowing through a long cylindrical pipe. The assumptions of the equation are that the flow is laminar viscous and incompressible and the flow is through a constant circular cross-section that is substantially longer than its diameter.