Search results
Results from the WOW.Com Content Network
Magmatism along strike-slip faults is the process of rock melting, magma ascent and emplacement, associated with the tectonics and geometry of various strike-slip settings, most commonly occurring along transform boundaries at mid-ocean ridge spreading centres [1] and at strike-slip systems parallel to oblique subduction zones. [2]
A fault bend, or fault stepover, forms when individual segments of the fault overlap and link together. The type of structures which form along the strike-slip fault depend on the sense of slip relative to the sense of stepping. When a sinistral fault steps to the right or a dextral fault steps to the left, a restraining bend is formed. [2]
Lateral strike-slip faults. Strike-slip faults occur when the blocks slide against each other laterally, parallel to the plane. The direction of the slip can be observed from either side of the fault, with the far block moving to the left indicating a left lateral slip, and the converse indicating a right lateral slip. See animation here [5]
An idealized strike-slip fault runs in a straight line with a vertical dip and has only horizontal motion, thus there is no change in topography due to motion of the fault. In reality, as strike-slip faults become large and developed, their behavior changes and becomes more complex. A long strike-slip fault follows a staircase-like trajectory ...
Strike-slip faults are associated with dominantly horizontal movement, leading to relatively simple linear zones of surface rupture where the fault is a simple planar structure. However, many strike-slip faults are formed of overlapping segments, leading to complex zones of normal or reverse faulting depending on the nature of the overlap.
Diagram of fault geometry (in map view) that leads to transtension at the bend or step-over. Releasing bends are transtensional structures that form where the orientation of a strike-slip fault becomes oblique to the regional slip vector causing local extension (such as a right stepping bend on a right-lateral fault). [1]
Oblique subduction model with the development of forearc sliver and margin parallel strike slip fault. Forearc sliver is a microplate bounded by the oceanic trench and strike slip fault. [14] Trench parallel strike slip fault develops when the forearc sliver moves away from stable continent. [14] Adapted from Haq and Davis, 2010. [14]
Strike-slip faults with left-lateral motion are also known as sinistral faults and those with right-lateral motion as dextral faults. [19] Each is defined by the direction of movement of the ground as would be seen by an observer on the opposite side of the fault. A special class of strike-slip fault is the transform fault when it forms a plate ...