Ads
related to: toughness of polycarbonate- Polycarbonate Sheeting
Shop Custom Size Polycarbonate
Sheeting On Our Website.
- Shop Greenhouse Paneling
Get Growing Year Round With Our
Greenhouse Paneling.
- Shop Storm Panels
Protect Your Home Or Business With
Storm Panels From ePlast.
- Get A Quote Today
Get Started On Your Next Project
With ePlast Today.
- Polycarbonate Sheeting
Search results
Results from the WOW.Com Content Network
Polycarbonate is commonly used in eye protection, as well as in other projectile-resistant viewing and lighting applications that would normally indicate the use of glass, but require much higher impact-resistance. Polycarbonate lenses also protect the eye from UV light.
Twinwall plastic most commonly refers to two exterior plastic sheets that are connected with a plastic support layer to create parallel channels. This design adds both impact toughness and the ability to support weight. Twinwall plastic may also be used to describe a pipe that has a smooth interior with exterior air filled ridges. [3]
One definition of material toughness is the amount of energy per unit volume that a material can absorb before rupturing. This measure of toughness is different from that used for fracture toughness, which describes the capacity of materials to resist fracture. [2] Toughness requires a balance of strength and ductility. [1]
Work hardening, also known as strain hardening, is the process by which a material's load-bearing capacity (strength) increases during plastic (permanent) deformation. This characteristic is what sets ductile materials apart from brittle materials. [ 1 ]
Duplex stainless steel is widely used in industry because it possesses excellent oxidation resistance, but it can have limited toughness due to its large ferritic grain size and embrittlement tendencies at temperatures ranging from 280 to 500 °C, especially at 475 °C, where spinodal decomposition of the supersaturated solid ferrite solution ...
where represents the applied true stress on the material, is the true strain, and is the strength coefficient. The value of the strain hardening exponent lies between 0 and 1, with a value of 0 implying a perfectly plastic solid and a value of 1 representing a perfectly elastic solid.
The low strength of polymers compared to theoretically predicted values are mainly due to the many microscopic imperfections found in the material. These defects namely dislocations, crystalline boundaries, amorphous interlayers and block structure can all lead to the non-uniform distribution of mechanical stress.
Fracture toughness varies by approximately 4 orders of magnitude across materials. Metals hold the highest values of fracture toughness. Cracks cannot easily propagate in tough materials, making metals highly resistant to cracking under stress and gives their stress–strain curve a large zone of plastic flow.
Ads
related to: toughness of polycarbonate