enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transduction (machine learning) - Wikipedia

    en.wikipedia.org/.../Transduction_(machine_learning)

    The most well-known example of a case-bases learning algorithm is the k-nearest neighbor algorithm, which is related to transductive learning algorithms. [2] Another example of an algorithm in this category is the Transductive Support Vector Machine (TSVM). A third possible motivation of transduction arises through the need to approximate.

  3. Conformal prediction - Wikipedia

    en.wikipedia.org/wiki/Conformal_prediction

    For example, for a significance level of 0.1, all classes with a p-value of 0.1 or greater are added to the prediction set. Transductive algorithms compute the nonconformity score using all available training data, while inductive algorithms compute it on a subset of the training set.

  4. Weak supervision - Wikipedia

    en.wikipedia.org/wiki/Weak_supervision

    The transductive learning framework was formally introduced by Vladimir Vapnik in the 1970s. [6] Interest in inductive learning using generative models also began in the 1970s. A probably approximately correct learning bound for semi-supervised learning of a Gaussian mixture was demonstrated by Ratsaby and Venkatesh in 1995. [7]

  5. Inductive bias - Wikipedia

    en.wikipedia.org/wiki/Inductive_bias

    The inductive bias (also known as learning bias) of a learning algorithm is the set of assumptions that the learner uses to predict outputs of given inputs that it has not encountered. [1] Inductive bias is anything which makes the algorithm learn one pattern instead of another pattern (e.g., step-functions in decision trees instead of ...

  6. Computational learning theory - Wikipedia

    en.wikipedia.org/wiki/Computational_learning_theory

    Inductive inference as developed by Ray Solomonoff; [5] [6] Algorithmic learning theory, from the work of E. Mark Gold; [7] Online machine learning, from the work of Nick Littlestone [citation needed]. While its primary goal is to understand learning abstractly, computational learning theory has led to the development of practical algorithms.

  7. Inductive logic programming - Wikipedia

    en.wikipedia.org/wiki/Inductive_logic_programming

    Inductive logic programming has adopted several different learning settings, the most common of which are learning from entailment and learning from interpretations. [16] In both cases, the input is provided in the form of background knowledge B, a logical theory (commonly in the form of clauses used in logic programming), as well as positive and negative examples, denoted + and respectively.

  8. First-order inductive learner - Wikipedia

    en.wikipedia.org/wiki/First-order_inductive_learner

    Input List of examples and predicate to be learned Output A set of first-order Horn clauses FOIL(Pred, Pos, Neg) Let Pos be the positive examples Let Pred be the predicate to be learned Until Pos is empty do: Let Neg be the negative examples Set Body to empty Call LearnClauseBody Add Pred ← Body to the rule Remove from Pos all examples which ...

  9. Statistical learning theory - Wikipedia

    en.wikipedia.org/wiki/Statistical_learning_theory

    Supervised learning involves learning from a training set of data. Every point in the training is an input–output pair, where the input maps to an output. The learning problem consists of inferring the function that maps between the input and the output, such that the learned function can be used to predict the output from future input.