Search results
Results from the WOW.Com Content Network
D. G. Champernowne built a Markov chain model of the distribution of income in 1953. [93] Herbert A. Simon and co-author Charles Bonini used a Markov chain model to derive a stationary Yule distribution of firm sizes. [94] Louis Bachelier was the first to observe that stock prices followed a random walk. [95]
A Markov chain with two states, A and E. In probability, a discrete-time Markov chain (DTMC) is a sequence of random variables, known as a stochastic process, in which the value of the next variable depends only on the value of the current variable, and not any variables in the past.
Stationary distribution may refer to: . Discrete-time Markov chain § Stationary distributions and continuous-time Markov chain § Stationary distribution, a special distribution for a Markov chain such that if the chain starts with its stationary distribution, the marginal distribution of all states at any time will always be the stationary distribution.
For a continuous time Markov chain (CTMC) with transition rate matrix, if can be found such that for every pair of states and = holds, then by summing over , the global balance equations are satisfied and is the stationary distribution of the process. [5]
In probability theory, Kelly's lemma states that for a stationary continuous-time Markov chain, a process defined as the time-reversed process has the same stationary distribution as the forward-time process. [1] The theorem is named after Frank Kelly. [2] [3] [4] [5]
Intuitively, a stochastic matrix represents a Markov chain; the application of the stochastic matrix to a probability distribution redistributes the probability mass of the original distribution while preserving its total mass. If this process is applied repeatedly, the distribution converges to a stationary distribution for the Markov chain.
The book is divided into two parts, the first more introductory and the second more advanced. [2] [6] After three chapters of introductory material on Markov chains, chapter four defines the ways of measuring the distance of a Markov chain to its stationary distribution and the time it takes to reach that distance.
We say is Markov with initial distribution and rate matrix to mean: the trajectories of are almost surely right continuous, let be a modification of to have (everywhere) right-continuous trajectories, (()) = + almost surely (note to experts: this condition says is non-explosive), the state sequence (()) is a discrete-time Markov chain with ...