Search results
Results from the WOW.Com Content Network
However, one gram of hydrogen reacts with 8 grams of oxygen to give water or with 35.5 grams of chlorine to give hydrogen chloride: hence 8 grams of oxygen and 35.5 grams of chlorine can be taken to be equivalent to one gram of hydrogen for the measurement of equivalent weights. This system can be extended further through different acids and bases.
It is also equal to the molar mass (M) divided by the mass density (ρ): = = The molar volume has the SI unit of cubic metres per mole (m 3 /mol), [ 1 ] although it is more typical to use the units cubic decimetres per mole (dm 3 /mol) for gases , and cubic centimetres per mole (cm 3 /mol) for liquids and solids .
Avogadro's law states that "equal volumes of all gases, at the same temperature and pressure, have the same number of molecules." [ 1 ] For a given mass of an ideal gas , the volume and amount (moles) of the gas are directly proportional if the temperature and pressure are constant.
The laws describing the behaviour of gases under fixed pressure, volume, amount of gas, and absolute temperature conditions are called gas laws.The basic gas laws were discovered by the end of the 18th century when scientists found out that relationships between pressure, volume and temperature of a sample of gas could be obtained which would hold to approximation for all gases.
The solution has 1 mole or 1 equiv Na +, 1 mole or 2 equiv Ca 2+, and 3 mole or 3 equiv Cl −. An earlier definition, used especially for chemical elements , holds that an equivalent is the amount of a substance that will react with 1 g (0.035 oz) of hydrogen , 8 g (0.28 oz) of oxygen , or 35.5 g (1.25 oz) of chlorine —or that will displace ...
One lb-mol is equal to 453.592 37 g‑mol, [6] which is the same numerical value as the number of grams in an international avoirdupois pound. Greenhouse and growth chamber lighting for plants is sometimes expressed in micromoles per square metre per second, where 1 mol photons ≈ 6.02 × 10 23 photons. [ 7 ]
For premium support please call: 800-290-4726 more ways to reach us
Where F B = Buoyant force (in newton); g = gravitational acceleration = 9.8066 m/s 2 = 9.8066 N/kg; V = volume (in m 3). Therefore, the amount of mass that can be lifted by hydrogen in air at sea level, equal to the density difference between hydrogen and air, is: (1.292 - 0.090) kg/m 3 = 1.202 kg/m 3