enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generalized linear mixed model - Wikipedia

    en.wikipedia.org/wiki/Generalized_linear_mixed_model

    In statistics, a generalized linear mixed model (GLMM) is an extension to the generalized linear model (GLM) in which the linear predictor contains random effects in addition to the usual fixed effects. [1] [2] [3] They also inherit from generalized linear models the idea of extending linear mixed models to non-normal data.

  3. Mixed model - Wikipedia

    en.wikipedia.org/wiki/Mixed_model

    A mixed model, mixed-effects model or mixed error-component model is a statistical model containing both fixed effects and random effects. [ 1 ] [ 2 ] These models are useful in a wide variety of disciplines in the physical, biological and social sciences.

  4. Multilevel model - Wikipedia

    en.wikipedia.org/wiki/Multilevel_model

    Bayesian research cycle using Bayesian nonlinear mixed effects model: (a) standard research cycle and (b) Bayesian-specific workflow. [19] Multilevel modeling is frequently used in diverse applications and it can be formulated by the Bayesian framework. Particularly, Bayesian nonlinear mixed-effects models have recently received significant ...

  5. Nonlinear mixed-effects model - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_mixed-effects_model

    PK/PD models for describing exposure-response relationships such as the Emax model can be formulated as nonlinear mixed-effects models. [8] The mixed-model approach allows modeling of both population level and individual differences in effects that have a nonlinear effect on the observed outcomes, for example the rate at which a compound is ...

  6. Generalized linear model - Wikipedia

    en.wikipedia.org/wiki/Generalized_linear_model

    In statistics, a generalized linear model (GLM) is a flexible generalization of ordinary linear regression.The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value.

  7. Hierarchical generalized linear model - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_generalized...

    Moreover, the generalized linear mixed model (GLMM) is a special case of the hierarchical generalized linear model. In hierarchical generalized linear models, the distributions of random effect do not necessarily follow normal distribution. If the distribution of is normal and the link function of is the identity function, then hierarchical ...

  8. General linear model - Wikipedia

    en.wikipedia.org/wiki/General_linear_model

    The general linear model incorporates a number of different statistical models: ANOVA, ANCOVA, MANOVA, MANCOVA, ordinary linear regression, t-test and F-test. The general linear model is a generalization of multiple linear regression to the case of more than one dependent variable.

  9. Poisson regression - Wikipedia

    en.wikipedia.org/wiki/Poisson_regression

    In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. [1] Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters.