enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    The eigenvalues are real. The eigenvectors of A −1 are the same as the eigenvectors of A. Eigenvectors are only defined up to a multiplicative constant. That is, if Av = λv then cv is also an eigenvector for any scalar c ≠ 0. In particular, −v and e iθ v (for any θ) are also eigenvectors.

  3. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Suppose the eigenvectors of A form a basis, or equivalently A has n linearly independent eigenvectors v 1, v 2, ..., v n with associated eigenvalues λ 1, λ 2, ..., λ n. The eigenvalues need not be distinct. Define a square matrix Q whose columns are the n linearly independent eigenvectors of A,

  4. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    Each Givens rotation can be done in O(n) steps when the pivot element p is known. However the search for p requires inspection of all N ≈ ⁠ 1 / 2 ⁠ n 2 off-diagonal elements, which means this search dominates the overall complexity and pushes the computational complexity of a sweep in the classical Jacobi algorithm to ().

  5. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  6. QR algorithm - Wikipedia

    en.wikipedia.org/wiki/QR_algorithm

    In numerical linear algebra, the QR algorithm or QR iteration is an eigenvalue algorithm: that is, a procedure to calculate the eigenvalues and eigenvectors of a matrix.The QR algorithm was developed in the late 1950s by John G. F. Francis and by Vera N. Kublanovskaya, working independently.

  7. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Decomposition: =, where D is a diagonal matrix formed from the eigenvalues of A, and the columns of V are the corresponding eigenvectors of A. Existence: An n -by- n matrix A always has n (complex) eigenvalues, which can be ordered (in more than one way) to form an n -by- n diagonal matrix D and a corresponding matrix of nonzero columns V that ...

  8. Rayleigh–Ritz method - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Ritz_method

    According to S. Ilanko, [2] citing Richard Courant, both Lord Rayleigh and Walther Ritz independently conceived the idea of utilizing the equivalence between boundary value problems of partial differential equations on the one hand and problems of the calculus of variations on the other hand for numerical calculation of the solutions, by ...

  9. Arnoldi iteration - Wikipedia

    en.wikipedia.org/wiki/Arnoldi_iteration

    In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method.Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.