Search results
Results from the WOW.Com Content Network
The result of a left outer join (or simply left join) for tables A and B always contains all rows of the "left" table (A), even if the join-condition does not find any matching row in the "right" table (B).
The right outer join ( ) behaves almost identically to the left outer join, but the roles of the tables are switched. The right outer join of relations R and S is written as R S . [ e ] The result of the right outer join is the set of all combinations of tuples in R and S that are equal on their common attribute names, in addition to tuples in ...
The hash join is an example of a join algorithm and is used in the implementation of a relational database management system.All variants of hash join algorithms involve building hash tables from the tuples of one or both of the joined relations, and subsequently probing those tables so that only tuples with the same hash code need to be compared for equality in equijoins.
SQL outer joins, including left outer joins, right outer joins, and full outer joins, automatically produce Nulls as placeholders for missing values in related tables. For left outer joins, for instance, Nulls are produced in place of rows missing from the table appearing on the right-hand side of the LEFT OUTER JOIN operator. The following ...
The sort-merge join (also known as merge join) is a join algorithm and is used in the implementation of a relational database management system. The basic problem of a join algorithm is to find, for each distinct value of the join attribute, the set of tuples in each relation which display that value. The key idea of the sort-merge algorithm is ...
A right join is employed over the Target (the INTO table) and the Source (the USING table / view / sub-query)--where Target is the left table and Source is the right one. The four possible combinations yield these rules:
algorithm nested_loop_join is for each tuple r in R do for each tuple s in S do if r and s satisfy the join condition then yield tuple <r,s> This algorithm will involve n r *b s + b r block transfers and n r +b r seeks, where b r and b s are number of blocks in relations R and S respectively, and n r is the number of tuples in relation R.
A block-nested loop (BNL) is an algorithm used to join two relations in a relational database. [1]This algorithm [2] is a variation of the simple nested loop join and joins two relations and (the "outer" and "inner" join operands, respectively).