Search results
Results from the WOW.Com Content Network
A stellar black hole (or stellar-mass black hole) is a black hole formed by the gravitational collapse of a star. [1] They have masses ranging from about 5 to several tens of solar masses. [2] They are the remnants of supernova explosions, which may be observed as a type of gamma ray burst. These black holes are also referred to as collapsars.
A black hole is a region of spacetime where gravity is so strong that no matter or electromagnetic radiation, such as light, can escape it. [2] Albert Einstein's theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. [3] [4] The boundary of no escape is called the event horizon.
A rogue black hole is a black hole that is not bound by any object's gravity, allowing them to float freely throughout the universe. Since black holes emit no light, the only ways to detect them are gravitational lensing or x-ray bursts that occur when they destroy an object.
A black hole of one solar mass (M ☉ = 2.0 × 10 30 kg) takes more than 10 67 years to evaporate—much longer than the current age of the universe at 1.4 × 10 10 years. [22] But for a black hole of 10 11 kg, the evaporation time is 2.6 × 10 9 years. This is why some astronomers are searching for signs of exploding primordial black holes.
A simulated particle collision in the LHC. The safety of high energy particle collisions was a topic of widespread discussion and topical interest during the time when the Relativistic Heavy Ion Collider (RHIC) and later the Large Hadron Collider (LHC)—currently the world's largest and most powerful particle accelerator—were being constructed and commissioned.
The supermassive black hole at the core of Messier 87, here shown by an image by the Event Horizon Telescope, is among the black holes in this list. This is an ordered list of the most massive black holes so far discovered (and probable candidates), measured in units of solar masses (M ☉), approximately 2 × 10 30 kilograms.
Now, the black hole has once again demonstrated strange features that teams of astronomers around the world have professed to never before seeing: Plasma jets moving at nearly one-third the speed ...
The point at which tidal forces destroy an object or kill a person will depend on the black hole's size. For a supermassive black hole, such as those found at a galaxy's center, this point lies within the event horizon, so an astronaut may cross the event horizon without noticing any squashing and pulling, although it remains only a matter of ...