Search results
Results from the WOW.Com Content Network
The total cost curve, if non-linear, can represent increasing and diminishing marginal returns.. The short-run total cost (SRTC) and long-run total cost (LRTC) curves are increasing in the quantity of output produced because producing more output requires more labor usage in both the short and long runs, and because in the long run producing more output involves using more of the physical ...
For example, a firm cannot build an additional factory in the short run, but this restriction does not apply in the long run. Because forecasting introduces complexity, firms typically assume that the long-run costs are based on the technology, information, and prices that the firm faces currently. The long-run cost curve does not try to ...
It says what fraction of the variance of the data is explained by the fitted trend line. It does not relate to the statistical significance of the trend line (see graph); the statistical significance of the trend is determined by its t-statistic. Often, filtering a series increases r 2 while making little difference to the fitted trend.
It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals. Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods.
Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.
The formulas given in the previous section allow one to calculate the point estimates of α and β — that is, the coefficients of the regression line for the given set of data. However, those formulas do not tell us how precise the estimates are, i.e., how much the estimators α ^ {\displaystyle {\widehat {\alpha }}} and β ^ {\displaystyle ...
Igor Pro - programming language with statistical features and numerical analysis; IMSL Numerical Libraries – software library with statistical algorithms; JMP – visual analysis and statistics package; LIMDEP – comprehensive statistics and econometrics package; LISREL – statistics package used in structural equation modeling