Search results
Results from the WOW.Com Content Network
For example, a fraction is put in lowest terms by cancelling out the common factors of the numerator and the denominator. [2] As another example, if a×b=a×c, then the multiplicative term a can be canceled out if a≠0, resulting in the equivalent expression b=c; this is equivalent to dividing through by a.
In mathematics, the method of clearing denominators, also called clearing fractions, is a technique for simplifying an equation equating two expressions that each are a sum of rational expressions – which includes simple fractions.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
The irreducible fraction for a given element is unique up to multiplication of denominator and numerator by the same invertible element. In the case of the rational numbers this means that any number has two irreducible fractions, related by a change of sign of both numerator and denominator; this ambiguity can be removed by requiring the ...
In mathematics, division by zero, division where the divisor (denominator) is zero, is a unique and problematic special case. Using fraction notation, the general example can be written as a 0 {\displaystyle {\tfrac {a}{0}}} , where a {\displaystyle a} is the dividend (numerator).
The article by Boas analyzes two-digit cases in bases other than base 10, e.g., 32 / 13 = 2 / 1 and its inverse are the only solutions in base 4 with two digits. [2]An example of anomalous cancellation with more than two digits is 165 / 462 = 15 / 42 , and an example with different numbers of digits is 98 / 392 = 8 / 32 .
This works because the cancellation in the numerator ( (+)) = ^ + (^) and the cancellation in the denominator ^ = (+) counteract each other; the function = (+) / is well-enough conditioned near zero that (^) gives a good approximation to (), and thus (^) gives a good approximation to = (+).
In elementary algebra, root rationalisation (or rationalization) is a process by which radicals in the denominator of an algebraic fraction are eliminated.. If the denominator is a monomial in some radical, say , with k < n, rationalisation consists of multiplying the numerator and the denominator by , and replacing by x (this is allowed, as, by definition, a n th root of x is a number that ...