Search results
Results from the WOW.Com Content Network
When quantifying limb stiffness, one cannot simply sum the individual joint stiffnesses due to the nonlinearities of the multi-joint system. A few of the specific methods for calculating limb stiffness can be seen below: [7] Vertical Stiffness (k vert) is a quantitative measure of leg stiffness that can be defined by the equations below: [7]
Values for the flexural strength measured with four-point bending will be significantly lower than with three-point bending., [8] Compared with three-point bending test, this method is more suitable for strength evaluation of butt joint specimens. The advantage of four-point bending test is that a larger portion of the specimen between two ...
The stiffness, , of a body is a measure of the resistance offered by an elastic body to deformation. For an elastic body with a single degree of freedom (DOF) (for example, stretching or compression of a rod), the stiffness is defined as k = F δ {\displaystyle k={\frac {F}{\delta }}} where,
Specific modulus is a materials property consisting of the elastic modulus per mass density of a material. It is also known as the stiffness to weight ratio or specific stiffness. High specific modulus materials find wide application in aerospace applications where minimum structural weight is required.
The complete state of stress in a body at a particular deformed configuration, i.e., at a particular time during the motion of the body, implies knowing the six independent components of the stress tensor (,,,,,), or the three principal stresses (,,), at each material point in the body at that time. However, numerical analysis and analytical ...
It gives the contact stress as a function of the normal contact force, the radii of curvature of both bodies and the modulus of elasticity of both bodies. Hertzian contact stress forms the foundation for the equations for load bearing capabilities and fatigue life in bearings, gears, and any other bodies where two surfaces are in contact.
The direct stiffness method was developed specifically to effectively and easily implement into computer software to evaluate complicated structures that contain a large number of elements. Today, nearly every finite element solver available is based on the direct stiffness method.
The flexural strength is stress at failure in bending. It is equal to or slightly larger than the failure stress in tension. Flexural strength, also known as modulus of rupture, or bend strength, or transverse rupture strength is a material property, defined as the stress in a material just before it yields in a flexure test. [1]