Search results
Results from the WOW.Com Content Network
The ergodic theory of dynamical systems has recently been used to prove combinatorial theorems about number theory which has given rise to the field of arithmetic combinatorics. Also dynamical systems theory is heavily involved in the relatively recent field of combinatorics on words. Also combinatorial aspects of dynamical systems are studied.
Dynamical systems theory and chaos theory deal with the long-term qualitative behavior of dynamical systems.Here, the focus is not on finding precise solutions to the equations defining the dynamical system (which is often hopeless), but rather to answer questions like "Will the system settle down to a steady state in the long term, and if so, what are the possible steady states?", or "Does ...
Dynamical systems deals with the study of the solutions to the equations of motion of systems that are primarily mechanical in nature; although this includes both planetary orbits as well as the behaviour of electronic circuits and the solutions to partial differential equations that arise in biology.
In the mathematical field of dynamical systems, a random dynamical system is a dynamical system in which the equations of motion have an element of randomness to them. Random dynamical systems are characterized by a state space S, a set of maps from S into itself that can be thought of as the set of all possible equations of motion, and a probability distribution Q on the set that represents ...
LaSalle's invariance principle (also known as the invariance principle, [1] Barbashin-Krasovskii-LaSalle principle, [2] or Krasovskii-LaSalle principle) is a criterion for the asymptotic stability of an autonomous (possibly nonlinear) dynamical system.
This category contains System and systems science related articles within the scope of the WikiProject Systems. Articles are automatically added to this category by using the project banner template .
Projected dynamical systems is a mathematical theory investigating the behaviour of dynamical systems where solutions are restricted to a constraint set. The discipline shares connections to and applications with both the static world of optimization and equilibrium problems and the dynamical world of ordinary differential equations.
In mathematics, specifically in the study of dynamical systems, an orbit is a collection of points related by the evolution function of the dynamical system. It can be understood as the subset of phase space covered by the trajectory of the dynamical system under a particular set of initial conditions, as the system evolves.