Search results
Results from the WOW.Com Content Network
The Long Short-Term Memory (LSTM) cell can process data sequentially and keep its hidden state through time. Long short-term memory (LSTM) [1] is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem [2] commonly encountered by traditional RNNs.
Connectionist temporal classification (CTC) is a type of neural network output and associated scoring function, for training recurrent neural networks (RNNs) such as LSTM networks to tackle sequence problems where the timing is variable.
Recurrent neural networks (RNNs) are a class of artificial neural network commonly used for sequential data processing. Unlike feedforward neural networks, which process data in a single pass, RNNs process data across multiple time steps, making them well-adapted for modelling and processing text, speech, and time series.
A 380M-parameter model for machine translation uses two long short-term memories (LSTM). [23] Its architecture consists of two parts. The encoder is an LSTM that takes in a sequence of tokens and turns it into a vector. The decoder is another LSTM that converts the vector into a sequence
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks, introduced in 2014 by Kyunghyun Cho et al. [1] The GRU is like a long short-term memory (LSTM) with a gating mechanism to input or forget certain features, [2] but lacks a context vector or output gate, resulting in fewer parameters than LSTM. [3]
Images, Text Classification, object detection 2007 [29] [30] G. Griffin et al. COYO-700M Image–text-pair dataset 10 billion pairs of alt-text and image sources in HTML documents in CommonCrawl 746,972,269 Images, Text Classification, Image-Language 2022 [31] SIFT10M Dataset SIFT features of Caltech-256 dataset. Extensive SIFT feature extraction.
GPT-1 achieved a score of 45.4, versus a previous best of 35.0 [3] in a text classification task using the Corpus of Linguistic Acceptability (CoLA). Finally, GPT-1 achieved an overall score of 72.8 (compared to a previous record of 68.9) on GLUE, a multi-task test. [10]