Search results
Results from the WOW.Com Content Network
The darker more stable isotope region departs from the line of protons (Z) = neutrons (N), as the element number Z becomes larger. This is a list of chemical elements by the stability of their isotopes. Of the first 82 elements in the periodic table, 80 have isotopes considered to be stable. [1] Overall, there are 251 known stable isotopes in ...
Stable even–even nuclides number as many as three isobars for some mass numbers, and up to seven isotopes for some atomic numbers. Conversely, of the 251 known stable nuclides, only five have both an odd number of protons and odd number of neutrons: hydrogen-2 ( deuterium ), lithium-6 , boron-10 , nitrogen-14 , and tantalum-180m .
The single monoisotopic exception to the odd Z rule is beryllium; its single stable, primordial isotope, beryllium-9, has 4 protons and 5 neutrons. This element is prevented from having a stable isotope with equal numbers of neutrons and protons ( beryllium-8 , with 4 of each) by its instability toward alpha decay , which is favored due to the ...
There are 145 stable even–even nuclides, forming ~58% of the 251 stable nuclides. There are also 22 primordial long-lived even–even nuclides. As a result, many of the 41 even-numbered elements from 2 to 82 have many primordial isotopes. Half of these even-numbered elements have six or more stable isotopes. The lightest stable even-even ...
A nuclide is a species of an atom with a specific number of protons and neutrons in the nucleus, for example, carbon-13 with 6 protons and 7 neutrons. The nuclide concept (referring to individual nuclear species) emphasizes nuclear properties over chemical properties, whereas the isotope concept (grouping all atoms of each element) emphasizes chemical over nuclear.
Two beta-decay stable nuclides exist for odd neutron numbers 1 (2 H and 3 He), 3 (5 He and 6 Li – the former has an extremely short half-life), 5 (9 Be and 10 B), 7 (13 C and 14 N), 55 (97 Mo and 99 Ru), and 85 (145 Nd and 147 Sm); the first four cases involve very light nuclides where odd-odd nuclides are more stable than their surrounding ...
Isotopes with the atomic number of the fission products and an N/Z near that of uranium or other fissionable nuclei have too many neutrons to be stable; this neutron excess is why multiple free neutrons but no free protons are usually emitted in the fission process, and it is also why many fission product nuclei undergo a long chain of β − ...
[100] [101] [102] Some of these heavier isotopes (such as 291 Mc, 291 Fl, and 291 Nh) may also undergo electron capture (converting a proton into a neutron) in addition to alpha decay with relatively long half-lives, decaying to nuclei such as 291 Cn that are predicted to lie near the center of the island of stability. However, this remains ...