Search results
Results from the WOW.Com Content Network
The last value listed, labelled “r2CU” is the pseudo-r-squared by Nagelkerke and is the same as the pseudo-r-squared by Cragg and Uhler. Pseudo-R-squared values are used when the outcome variable is nominal or ordinal such that the coefficient of determination R 2 cannot be applied as a measure for goodness of fit and when a likelihood ...
Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).
Nicolaas Jan Dirk "Nico" Nagelkerke (born 1951) is a Dutch biostatistician and epidemiologist. As of 2012, he was a professor of biostatistics at the United Arab Emirates University . He previously taught at the University of Leiden in the Netherlands .
If, for example, the out-of-sample mean squared error, also known as the mean squared prediction error, is substantially higher than the in-sample mean square error, this is a sign of deficiency in the model. A development in medical statistics is the use of out-of-sample cross validation techniques in meta-analysis.
R squared will be negative if you remove the intercept from the equation. Nagelkerke's pseudo-R^2 is a scaled version of Cox and Snell's R^2 that can be obtained from a generalized linear model when dealing with binary responses.
All have the same trend, but more filtering leads to higher r 2 of fitted trend line. The least-squares fitting process produces a value, r-squared (r 2), which is 1 minus the ratio of the variance of the residuals to the variance of the dependent variable. It says what fraction of the variance of the data is explained by the fitted trend line.
If F(r) is the Fisher transformation of r, the sample Spearman rank correlation coefficient, and n is the sample size, then z = n − 3 1.06 F ( r ) {\displaystyle z={\sqrt {\frac {n-3}{1.06}}}F(r)} is a z -score for r , which approximately follows a standard normal distribution under the null hypothesis of statistical independence ( ρ = 0 ).
In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of one parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size ...