enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Iron(III) chloride - Wikipedia

    en.wikipedia.org/wiki/Iron(III)_chloride

    Iron(III) chloride forms a 1:2 adduct with Lewis bases such as triphenylphosphine oxide; e.g., FeCl 3 (OP(C 6 H 5) 3) 2. The related 1:2 complex FeCl 3 (OEt 2) 2, where Et = C 2 H 5), has been crystallized from ether solution. [14] Iron(III) chloride also reacts with tetraethylammonium chloride to give the yellow salt of the tetrachloroferrate ...

  3. Comparison of commercial battery types - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_commercial...

    Cell chemistry Also known as Electrode Re­charge­able Com­mercial­ized Voltage Energy density Specific power Cost † Discharge efficiency Self-discharge rate Shelf life Anode Electro­lyte Cathode Cutoff Nominal 100% SOC by mass by volume; year V V V MJ/kg (Wh/kg) MJ/L (Wh/L) W/kg Wh/$ ($/kWh) % %/month years Lead–acid: SLA VRLA PbAc ...

  4. Nernst equation - Wikipedia

    en.wikipedia.org/wiki/Nernst_equation

    In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...

  5. Flow battery - Wikipedia

    en.wikipedia.org/wiki/Flow_battery

    A typical flow battery consists of two tanks of liquids which are pumped past a membrane held between two electrodes. [1]A flow battery, or redox flow battery (after reduction–oxidation), is a type of electrochemical cell where chemical energy is provided by two chemical components dissolved in liquids that are pumped through the system on separate sides of a membrane.

  6. Charge transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Charge_transfer_coefficient

    Charge transfer coefficient, and symmetry factor (symbols α and β, respectively) are two related parameters used in description of the kinetics of electrochemical reactions. They appear in the Butler–Volmer equation and related expressions.

  7. Ion transport number - Wikipedia

    en.wikipedia.org/wiki/Ion_transport_number

    The practical importance of high (i.e. close to 1) transference numbers of the charge-shuttling ion (i.e. Li+ in lithium-ion batteries) is related to the fact, that in single-ion devices (such as lithium-ion batteries) electrolytes with the transfer number of the ion near 1, concentration gradients do not develop. A constant electrolyte ...

  8. Iron redox flow battery - Wikipedia

    en.wikipedia.org/wiki/Iron_redox_flow_battery

    The group set the groundwork for further development. In 1979, Thaller et. al. introduced an iron-hydrogen fuel cell as a rebalancing cell for the chromium-iron redox flow battery [19] which was adapted 1983 for the iron-redox flow batteries by Stalnake et al. [20] Further development went into the fuel cell as a separate system. [11] [12] [21]

  9. Iron(II) chloride - Wikipedia

    en.wikipedia.org/wiki/Iron(II)_chloride

    Iron(II) chloride, also known as ferrous chloride, is the chemical compound of formula FeCl 2. It is a paramagnetic solid with a high melting point. The compound is white, but typical samples are often off-white.