Search results
Results from the WOW.Com Content Network
A similar radiogenic series is derived from the long-lived radioactive primordial nuclide 232 Th. These nuclides are described as geogenic, meaning that they are decay or fission products of uranium or other actinides in subsurface rocks. [6] All such nuclides have shorter half-lives than their parent radioactive primordial nuclides.
The stable nuclides of lithium, beryllium, and boron found on Earth are thought to have been formed by the same process as the cosmogenic nuclides but at an earlier time in cosmic ray spallation predominantly before the Solar System's formation, and thus they are by definition primordial nuclides and not cosmogenic.
It is prevented from having a stable isotope with 4 protons and 6 neutrons by the very large mismatch in proton/neutron ratio for such a light element. (Nevertheless, beryllium-10 has a half-life of 1.36 million years, which is too short to be primordial, but still indicates unusual stability for a light isotope with such an imbalance.)
Indeed, none of these primordial isotopes of the elements from beryllium to oxygen have yet been detected, although those of beryllium and boron may be able to be detected in the future. So far, the only stable nuclides known experimentally to have been made during Big Bang nucleosynthesis are protium, deuterium, helium-3, helium-4, and lithium-7.
One of the primordial nuclides is tantalum-180m, which is predicted to have a half-life in excess of 10 15 years, but has never been observed to decay. The even-longer half-life of 2.2 × 10 24 years of tellurium-128 was measured by a unique method of detecting its radiogenic daughter xenon-128 and is the longest known experimentally measured ...
By convention, certain stable nuclides of lithium, beryllium, and boron are thought to have been produced by cosmic ray spallation in the period of time between the Big Bang and the Solar System's formation (thus making these primordial nuclides, by definition) are not termed "cosmogenic", even though they were formed by the same process as the ...
Beyond the naturally occurring nuclides, more than 3000 radionuclides of varying half-lives have been artificially produced and characterized. The known nuclides are shown in Table of nuclides. A list of primordial nuclides is given sorted by element, at List of elements by stability of isotopes.
The next group is the primordial radioactive nuclides. These have been measured to be radioactive, or decay products have been identified in natural samples (tellurium-128, barium-130). There are 35 of these (see these nuclides ), of which 25 have half-lives longer than 10 13 years.