Search results
Results from the WOW.Com Content Network
At 0 °C (32 °F), the speed of sound in dry air (sea level 14.7 psi) is about 331 m/s (1,086 ft/s; 1,192 km/h; 740 mph; 643 kn). [1] The speed of sound in an ideal gas depends only on its temperature and composition. The speed has a weak dependence on frequency and pressure in dry air, deviating slightly from ideal behavior.
The speed of sound at any given point depends upon the compressibility which in turn depends upon the density at that point. It requires much work to compress anything more into an already compacted space. This can be specified by the "speed of sound field" c.
The speed of sound in any chemical element in the fluid phase has one temperature-dependent value. In the solid phase, different types of sound wave may be propagated, each with its own speed: among these types of wave are longitudinal (as in fluids), transversal, and (along a surface or plate) extensional. [1]
Figure 1. Table 1's data in graphical format. Although given as a function of depth [note 1], the speed of sound in the ocean does not depend solely on depth.Rather, for a given depth, the speed of sound depends on the temperature at that depth, the depth itself, and the salinity at that depth, in that order.
Those physical properties and the speed of sound change with ambient conditions. For example, the speed of sound in gases depends on temperature. In 20 °C (68 °F) air at sea level, the speed of sound is approximately 343 m/s (1,230 km/h; 767 mph) using the formula v [m/s] = 331 + 0.6 T [°C].
Acoustic theory is a scientific field that relates to the description of sound waves.It derives from fluid dynamics.See acoustics for the engineering approach.. For sound waves of any magnitude of a disturbance in velocity, pressure, and density we have
The speed of sound (i.e., the longitudinal motion of wavefronts) is related to frequency and wavelength of a wave by =.. This is different from the particle velocity , which refers to the motion of molecules in the medium due to the sound, and relates to the plane wave pressure to the fluid density and sound speed by =.
In acoustics, Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity.It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate α given by = where η is the dynamic viscosity coefficient of the fluid, ω is the sound's angular frequency, ρ is the fluid ...