Search results
Results from the WOW.Com Content Network
In computer science, greedy number partitioning is a class of greedy algorithms for multiway number partitioning. The input to the algorithm is a set S of numbers, and a parameter k. The required output is a partition of S into k subsets, such that the sums in the subsets are as nearly equal as possible. Greedy algorithms process the numbers ...
Horizontal partitioning splits one or more tables by row, usually within a single instance of a schema and a database server. It may offer an advantage by reducing index size (and thus search effort) provided that there is some obvious, robust, implicit way to identify in which partition a particular row will be found, without first needing to search the index, e.g., the classic example of the ...
[1]: sec.5 The problem is parametrized by a positive integer k, and called k-way number partitioning. [2] The input to the problem is a multiset S of numbers (usually integers), whose sum is k*T. The associated decision problem is to decide whether S can be partitioned into k subsets such that the sum of each subset is exactly T.
Balanced number partitioning is a variant of multiway number partitioning in which there are constraints on the number of items allocated to each set. The input to the problem is a set of n items of different sizes, and two integers m, k.
Partitioning options on a table in MySQL in the environment of the Adminer tool. A partition is a division of a logical database or its constituent elements into distinct independent parts. Database partitioning refers to intentionally breaking a large database into smaller ones for scalability purposes, distinct from network partitions which ...
The snowflake schema is in the same family as the star schema logical model. In fact, the star schema is considered a special case of the snowflake schema. The snowflake schema provides some advantages over the star schema in certain situations, including: Some OLAP multidimensional database modeling tools are optimized for snowflake schemas. [3]
The partition problem is NP hard. This can be proved by reduction from the subset sum problem. [6] An instance of SubsetSum consists of a set S of positive integers and a target sum T; the goal is to decide if there is a subset of S with sum exactly T.
The algorithm can be extended to the k-way multi-partitioning problem, but then takes O(n(k − 1)m k − 1) memory where m is the largest number in the input, making it impractical even for k = 3 unless the inputs are very small numbers. [1] This algorithm can be generalized to a solution for the subset sum problem.