Search results
Results from the WOW.Com Content Network
But now we can explain the basis for the multiplicative/additive distinction in the rules for the two different versions of conjunction: for the multiplicative connective (⊗), the context of the conclusion (Γ, Δ) is split up between the premises, whereas for the additive case connective (&) the context of the conclusion (Γ) is carried ...
The distinction between additive and multiplicative identity is used most often for sets that support both binary operations, such as rings, integral domains, and fields. The multiplicative identity is often called unity in the latter context (a ring with unity).
Totally additive is also used in this sense by analogy with totally multiplicative functions. If f is a completely additive function then f (1) = 0. Every completely additive function is additive, but not vice versa.
The multiplicative group of the field is the group whose underlying set is the set of nonzero real numbers {} and whose operation is multiplication. More generally, one speaks of an additive group whenever the group operation is notated as addition; in this case, the identity is typically denoted 0 {\displaystyle 0} , and the inverse of ...
If the additive identity and the multiplicative identity are the same, then the ring is trivial (proved below). In the ring M m × n (R) of m-by-n matrices over a ring R, the additive identity is the zero matrix, [1] denoted O or 0, and is the m-by-n matrix whose entries consist entirely of the identity element 0 in R.
Among the examples above the additive, multiplicative groups and the general and special linear groups are affine. Using the action of an affine algebraic group on its coordinate ring it can be shown that every affine algebraic group is a linear (or matrix group), meaning that it is isomorphic to an algebraic subgroup of the general linear group.
While approximation algorithms always provide an a priori worst case guarantee (be it additive or multiplicative), in some cases they also provide an a posteriori guarantee that is often much better. This is often the case for algorithms that work by solving a convex relaxation of the optimization problem on the given input.
The group scheme of n-th roots of unity is by definition the kernel of the n-power map on the multiplicative group GL(1), considered as a group scheme.That is, for any integer n > 1 we can consider the morphism on the multiplicative group that takes n-th powers, and take an appropriate fiber product of schemes, with the morphism e that serves as the identity.