enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear logic - Wikipedia

    en.wikipedia.org/wiki/Linear_logic

    But now we can explain the basis for the multiplicative/additive distinction in the rules for the two different versions of conjunction: for the multiplicative connective (⊗), the context of the conclusion (Γ, Δ) is split up between the premises, whereas for the additive case connective (&) the context of the conclusion (Γ) is carried ...

  3. Identity element - Wikipedia

    en.wikipedia.org/wiki/Identity_element

    The distinction between additive and multiplicative identity is used most often for sets that support both binary operations, such as rings, integral domains, and fields. The multiplicative identity is often called unity in the latter context (a ring with unity).

  4. Additive function - Wikipedia

    en.wikipedia.org/wiki/Additive_function

    Totally additive is also used in this sense by analogy with totally multiplicative functions. If f is a completely additive function then f (1) = 0. Every completely additive function is additive, but not vice versa.

  5. Group (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Group_(mathematics)

    The multiplicative group of the field is the group whose underlying set is the set of nonzero real numbers {} and whose operation is multiplication. More generally, one speaks of an additive group whenever the group operation is notated as addition; in this case, the identity is typically denoted ⁠ 0 {\displaystyle 0} ⁠ , and the inverse of ...

  6. Additive identity - Wikipedia

    en.wikipedia.org/wiki/Additive_identity

    If the additive identity and the multiplicative identity are the same, then the ring is trivial (proved below). In the ring M m × n (R) of m-by-n matrices over a ring R, the additive identity is the zero matrix, [1] denoted O or 0, and is the m-by-n matrix whose entries consist entirely of the identity element 0 in R.

  7. Algebraic group - Wikipedia

    en.wikipedia.org/wiki/Algebraic_group

    Among the examples above the additive, multiplicative groups and the general and special linear groups are affine. Using the action of an affine algebraic group on its coordinate ring it can be shown that every affine algebraic group is a linear (or matrix group), meaning that it is isomorphic to an algebraic subgroup of the general linear group.

  8. Approximation algorithm - Wikipedia

    en.wikipedia.org/wiki/Approximation_algorithm

    While approximation algorithms always provide an a priori worst case guarantee (be it additive or multiplicative), in some cases they also provide an a posteriori guarantee that is often much better. This is often the case for algorithms that work by solving a convex relaxation of the optimization problem on the given input.

  9. Multiplicative group - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group

    The group scheme of n-th roots of unity is by definition the kernel of the n-power map on the multiplicative group GL(1), considered as a group scheme.That is, for any integer n > 1 we can consider the morphism on the multiplicative group that takes n-th powers, and take an appropriate fiber product of schemes, with the morphism e that serves as the identity.