Search results
Results from the WOW.Com Content Network
John M. Howie, Fundamentals of Semigroup Theory (1995), Clarendon Press, Oxford ISBN 0-19-851194-9 M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories with Applications to Wreath Products and Graphs , De Gruyter Expositions in Mathematics vol. 29, Walter de Gruyter, 2000, ISBN 3-11-015248-7 .
Its unit element is the class of the ordinary 2-sphere. Furthermore, if a denotes the class of the torus, and b denotes the class of the projective plane, then every element c of the monoid has a unique expression in the form c = na + mb where n is a positive integer and m = 0, 1, or 2. We have 3b = a + b.
The FBISE was established under the FBISE Act 1975. [2] It is an autonomous body of working under the Ministry of Federal Education and Professional Training. [3] The official website of FBISE was launched on June 7, 2001, and was inaugurated by Mrs. Zobaida Jalal, the Minister for Education [4] The first-ever online result of FBISE was announced on 18 August 2001. [5]
In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.
A monoid object in the category of monoids (with the direct product of monoids) is just a commutative monoid. This follows easily from the Eckmann–Hilton argument. A monoid object in the category of complete join-semilattices Sup (with the monoidal structure induced by the Cartesian product) is a unital quantale.
Algebraic structures between magmas and groups: A semigroup is a magma with associativity.A monoid is a semigroup with an identity element.. In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it.
Numerical semigroups are commutative monoids and are also known as numerical monoids. [ 1 ] [ 2 ] The definition of numerical semigroup is intimately related to the problem of determining nonnegative integers that can be expressed in the form x 1 n 1 + x 2 n 2 + ... + x r n r for a given set { n 1 , n 2 , ..., n r } of positive integers and for ...
Ordinary monoids are precisely the monoid objects in the cartesian monoidal category Set. Further, any (small) strict monoidal category can be seen as a monoid object in the category of categories Cat (equipped with the monoidal structure induced by the cartesian product).