Search results
Results from the WOW.Com Content Network
The tangent space and the cotangent space at a point are both real vector spaces of the same dimension and therefore isomorphic to each other via many possible isomorphisms. The introduction of a Riemannian metric or a symplectic form gives rise to a natural isomorphism between the tangent space and the cotangent space at a point, associating ...
The cotangent bundle has a canonical symplectic 2-form on it, as an exterior derivative of the tautological one-form, the symplectic potential. Proving that this form is, indeed, symplectic can be done by noting that being symplectic is a local property: since the cotangent bundle is locally trivial, this definition need only be checked on R n ...
In mathematics, a coordinate-induced basis is a basis for the tangent space or cotangent space of a manifold that is induced by a certain coordinate system. Given the coordinate system x a {\displaystyle x^{a}} , the coordinate-induced basis e a {\displaystyle e_{a}} of the tangent space is given by
denote the tangent bundle and cotangent bundle, respectively, of the smooth manifold . , denote the tangent spaces of , at the points , , respectively. denotes the cotangent space of at the point .
The cotangent space of a local ring R, with maximal ideal is defined to be / where 2 is given by the product of ideals.It is a vector space over the residue field k:= R/.Its dual (as a k-vector space) is called tangent space of R.
The cotangent bundle of a manifold is locally modeled on a space similar to the first example. It can be shown that we can glue these affine symplectic forms hence this bundle forms a symplectic manifold. A less trivial example of a Lagrangian submanifold is the zero section of the cotangent bundle of a manifold. For example, let
For any curve and two points = and = on this curve, an affine connection gives rise to a map of vectors in the tangent space at into vectors in the tangent space at : =,, and () can be computed component-wise by solving the differential equation = () = () where () is the vector tangent to the curve at the point ().
More abstractly, in classical mechanics phase space is the cotangent bundle of configuration space, and in this interpretation the procedure above expresses that a choice of local coordinates on configuration space induces a choice of natural local Darboux coordinates for the standard symplectic structure on a cotangent space.