enow.com Web Search

  1. Ad

    related to: stochastic gradient descent ppt template

Search results

  1. Results from the WOW.Com Content Network
  2. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    Stochastic gradient descent competes with the L-BFGS algorithm, [citation needed] which is also widely used. Stochastic gradient descent has been used since at least 1960 for training linear regression models, originally under the name ADALINE. [25] Another stochastic gradient descent algorithm is the least mean squares (LMS) adaptive filter.

  3. Backtracking line search - Wikipedia

    en.wikipedia.org/wiki/Backtracking_line_search

    Another way is the so-called adaptive standard GD or SGD, some representatives are Adam, Adadelta, RMSProp and so on, see the article on Stochastic gradient descent. In adaptive standard GD or SGD, learning rates are allowed to vary at each iterate step n, but in a different manner from Backtracking line search for gradient descent.

  4. Vowpal Wabbit - Wikipedia

    en.wikipedia.org/wiki/Vowpal_Wabbit

    Vowpal Wabbit (VW) is an open-source fast online interactive machine learning system library and program developed originally at Yahoo! Research, and currently at Microsoft Research.

  5. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    Illustration of gradient descent on a series of level sets. Gradient descent is based on the observation that if the multi-variable function is defined and differentiable in a neighborhood of a point , then () decreases fastest if one goes from in the direction of the negative gradient of at , ().

  6. Federated learning - Wikipedia

    en.wikipedia.org/wiki/Federated_learning

    Federated stochastic gradient descent [19] is the direct transposition of this algorithm to the federated setting, but by using a random fraction of the nodes and using all the data on this node. The gradients are averaged by the server proportionally to the number of training samples on each node, and used to make a gradient descent step.

  7. Gradient method - Wikipedia

    en.wikipedia.org/wiki/Gradient_method

    In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.

  8. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    Stochastic gradient descent; Backpropagation; ... As noted above, gradient descent tells us that our change for each weight should be proportional to the gradient.

  9. Stochastic gradient Langevin dynamics - Wikipedia

    en.wikipedia.org/wiki/Stochastic_Gradient_Langev...

    SGLD can be applied to the optimization of non-convex objective functions, shown here to be a sum of Gaussians. Stochastic gradient Langevin dynamics (SGLD) is an optimization and sampling technique composed of characteristics from Stochastic gradient descent, a Robbins–Monro optimization algorithm, and Langevin dynamics, a mathematical extension of molecular dynamics models.

  1. Ad

    related to: stochastic gradient descent ppt template