Search results
Results from the WOW.Com Content Network
Pruning processes can be divided into two types (pre- and post-pruning). Pre-pruning procedures prevent a complete induction of the training set by replacing a stop criterion in the induction algorithm (e.g. max. Tree depth or information gain (Attr)> minGain). Pre-pruning methods are considered to be more efficient because they do not induce ...
Pruning allows cutting parts of decision trees to give more clarity and Grafting adds nodes to the decision trees to increase the predictive accuracy. To achieve grafting new branches can be added in the place of a single leaf or graft within leaves.
Decision trees can also be seen as generative models of induction rules from empirical data. An optimal decision tree is then defined as a tree that accounts for most of the data, while minimizing the number of levels (or "questions"). [8] Several algorithms to generate such optimal trees have been devised, such as ID3/4/5, [9] CLS, ASSISTANT ...
C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm.The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier.
Decision Tree Model. In computational complexity theory, the decision tree model is the model of computation in which an algorithm can be considered to be a decision tree, i.e. a sequence of queries or tests that are done adaptively, so the outcome of previous tests can influence the tests performed next.
Pages in category "Decision trees" ... Decision tree model; Decision tree pruning; E. Evasive Boolean function; F. Fast-and-frugal trees; G. Gradient boosting;
Consisting of multiple decision trees, forests are able to more accurately make predictions than single trees. Requires much more time to train the data compared to decision trees. Having a large forest can quickly begin to decrease the speed in which one's program operates because it has to traverse much more data even though each tree is ...
Decision tree pruning, a method of simplification of a decision tree; Pruning (artificial neural network), a method of simplification of an artificial neuronal network; Pruning (morphology), a technique used in digital image processing based on mathematical morphology