Search results
Results from the WOW.Com Content Network
Pruning processes can be divided into two types (pre- and post-pruning). Pre-pruning procedures prevent a complete induction of the training set by replacing a stop criterion in the induction algorithm (e.g. max. Tree depth or information gain (Attr)> minGain). Pre-pruning methods are considered to be more efficient because they do not induce ...
Decision tree learning is a method commonly used in data mining. [3] The goal is to create a model that predicts the value of a target variable based on several input variables. A decision tree is a simple representation for classifying examples.
Decision Tree Model. In computational complexity theory, the decision tree model is the model of computation in which an algorithm can be considered to be a decision tree, i.e. a sequence of queries or tests that are done adaptively, so the outcome of previous tests can influence the tests performed next.
The nodes and leaves can be identified from the given information and the decision trees are constructed. One such decision tree is as follows, Decision Tree branch for the information. Here the X-axis is represented as A and Y-axis as B. There are two cuts in the decision trees – nodes at 11 and 5 respective to A.
Decision trees can also be seen as generative models of induction rules from empirical data. An optimal decision tree is then defined as a tree that accounts for most of the data, while minimizing the number of levels (or "questions"). [8] Several algorithms to generate such optimal trees have been devised, such as ID3/4/5, [9] CLS, ASSISTANT ...
It gives a prediction model in the form of an ensemble of weak prediction models, i.e., models that make very few assumptions about the data, which are typically simple decision trees. [1] [2] When a decision tree is the weak learner, the resulting algorithm is called gradient-boosted trees; it usually outperforms random forest. [1] As with ...
C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm.The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier.
C5.0, which Quinlan is commercially selling (single-threaded version is distributed under the terms of the GNU General Public License), is an improvement on C4.5.The advantages are speed (several orders of magnitude faster), memory efficiency, smaller decision trees, boosting (more accuracy), ability to weight different attributes, and winnowing (reducing noise).