Search results
Results from the WOW.Com Content Network
and | are bitwise operators that occur in many programming languages. The major difference is that bitwise operations operate on the individual bits of a binary numeral, whereas conditional operators operate on logical operations. Additionally, expressions before and after a bitwise operator are always evaluated.
In the case of odd parity, the coding is reversed. For a given set of bits, if the count of bits with a value of 1 is even, the parity bit value is set to 1 making the total count of 1s in the whole set (including the parity bit) an odd number. If the count of bits with a value of 1 is odd, the count is already odd so the parity bit's value is 0.
To determine if a number is a power of two, conceptually we may repeatedly do integer divide by two until the number won't divide by 2 evenly; if the only factor left is 1, the original number was a power of 2. Using bit and logical operators, there is a simple expression which will return true (1) or false (0):
For unsigned integers, the bitwise complement of a number is the "mirror reflection" of the number across the half-way point of the unsigned integer's range. For example, for 8-bit unsigned integers, NOT x = 255 - x , which can be visualized on a graph as a downward line that effectively "flips" an increasing range from 0 to 255, to a ...
In the x86 assembly language, the TEST instruction performs a bitwise AND on two operands. The flags SF, ZF, PF are modified while the result of the AND is discarded. The OF and CF flags are set to 0, while AF flag is undefined. There are 9 different opcodes for the TEST instruction depending on the type and size of the operands. It can compare ...
The simplest checksum algorithm is the so-called longitudinal parity check, which breaks the data into "words" with a fixed number n of bits, and then computes the bitwise exclusive or (XOR) of all those words. The result is appended to the message as an extra word.
the use of 2 to check whether a number is even or odd, as in isEven = (x % 2 == 0), where % is the modulo operator; the use of simple arithmetic constants, e.g., in expressions such as circumference = 2 * Math.PI * radius, [1] or for calculating the discriminant of a quadratic equation as d = b^2 − 4*a*c
The formal definition of an arithmetic shift, from Federal Standard 1037C is that it is: . A shift, applied to the representation of a number in a fixed radix numeration system and in a fixed-point representation system, and in which only the characters representing the fixed-point part of the number are moved.