enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    On the Evaluation of Unsupervised Outlier Detection: Measures, Datasets, and an Empirical Study Most data files are adapted from UCI Machine Learning Repository data, some are collected from the literature. treated for missing values, numerical attributes only, different percentages of anomalies, labels 1000+ files ARFF: Anomaly detection

  3. Anomaly detection - Wikipedia

    en.wikipedia.org/wiki/Anomaly_detection

    ELKI is an open-source Java data mining toolkit that contains several anomaly detection algorithms, as well as index acceleration for them. PyOD is an open-source Python library developed specifically for anomaly detection. [56] scikit-learn is an open-source Python library that contains some algorithms for unsupervised anomaly detection.

  4. Local outlier factor - Wikipedia

    en.wikipedia.org/wiki/Local_outlier_factor

    In anomaly detection, the local outlier factor (LOF) is an algorithm proposed by Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng and Jörg Sander in 2000 for finding anomalous data points by measuring the local deviation of a given data point with respect to its neighbours.

  5. k-nearest neighbors algorithm - Wikipedia

    en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

    Compute the Euclidean or Mahalanobis distance from the query example to the labeled examples. Order the labeled examples by increasing distance. Find a heuristically optimal number k of nearest neighbors, based on RMSE. This is done using cross validation. Calculate an inverse distance weighted average with the k-nearest multivariate neighbors.

  6. Confusion matrix - Wikipedia

    en.wikipedia.org/wiki/Confusion_matrix

    In this confusion matrix, of the 8 samples with cancer, the system judged that 2 were cancer-free, and of the 4 samples without cancer, it predicted that 1 did have cancer. All correct predictions are located in the diagonal of the table (highlighted in green), so it is easy to visually inspect the table for prediction errors, as values outside ...

  7. Anomaly-based intrusion detection system - Wikipedia

    en.wikipedia.org/wiki/Anomaly-based_intrusion...

    Systems using artificial neural networks have been used to great effect. Another method is to define what normal usage of the system comprises using a strict mathematical model, and flag any deviation from this as an attack. This is known as strict anomaly detection. [3]

  8. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster.

  9. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  1. Related searches anomaly detection using knn in python 8 in excel template examples full

    anomaly detection wikiwhat is anomaly in data
    types of anomaly detectionk nn regression algorithm
    what is anomaly detection