enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Focal length - Wikipedia

    en.wikipedia.org/wiki/Focal_length

    For a thin lens in air, the focal length is the distance from the center of the lens to the principal foci (or focal points) of the lens.For a converging lens (for example a convex lens), the focal length is positive and is the distance at which a beam of collimated light will be focused to a single spot.

  3. Vergence (optics) - Wikipedia

    en.wikipedia.org/wiki/Vergence_(optics)

    For concave lenses, the focal point is on the back side of the lens, or the output side of the focal plane, and is negative in power. A lens with no optical power is called an optical window, having flat, parallel faces. The optical power directly relates to how large positive images will be magnified, and how small negative images will be ...

  4. Lens - Wikipedia

    en.wikipedia.org/wiki/Lens

    which is the ratio of the output beam width to the input beam width. Note the sign convention: a telescope with two convex lenses (f 1 > 0, f 2 > 0) produces a negative magnification, indicating an inverted image. A convex plus a concave lens (f 1 > 0 > f 2) produces a positive magnification and the

  5. Optics - Wikipedia

    en.wikipedia.org/wiki/Optics

    where S 1 is the distance from the object to the lens, θ 2 is the distance from the lens to the image, and f is the focal length of the lens. In the sign convention used here, the object and image distances are positive if the object and image are on opposite sides of the lens. [45]

  6. Geometrical optics - Wikipedia

    en.wikipedia.org/wiki/Geometrical_optics

    Incoming parallel rays are focused by a convex lens into an inverted real image one focal length from the lens, on the far side of the lens. Rays from an object at finite distance are focused further from the lens than the focal distance; the closer the object is to the lens, the further the image is from the lens.

  7. Real image - Wikipedia

    en.wikipedia.org/wiki/Real_image

    The distance is not the same as from the object to the lenses. Real images may also be inspected by a second lens or lens system. This is the mechanism used by telescopes, binoculars and light microscopes. The objective lens gathers the light from the object and projects a real image within the structure of the optical instrument. A second lens ...

  8. Magnification - Wikipedia

    en.wikipedia.org/wiki/Magnification

    where is the focal length, is the distance from the lens to the object, and = as the distance of the object with respect to the front focal point. A sign convention is used such that d 0 {\textstyle d_{0}} and d i {\displaystyle d_{i}} (the image distance from the lens) are positive for real object and image, respectively, and negative for ...

  9. Center of curvature - Wikipedia

    en.wikipedia.org/wiki/Center_of_curvature

    This term is generally used in physics regarding the study of lenses and mirrors (see radius of curvature (optics)). It can also be defined as the spherical distance between the point at which all the rays falling on a lens or mirror either seems to converge to (in the case of convex lenses and concave mirrors) or diverge from (in the case of ...