Search results
Results from the WOW.Com Content Network
In statistics, the conditional probability table (CPT) is defined for a set of discrete and mutually dependent random variables to display conditional probabilities of a single variable with respect to the others (i.e., the probability of each possible value of one variable if we know the values taken on by the other variables).
If the conditional distribution of given is a continuous distribution, then its probability density function is known as the conditional density function. [1] The properties of a conditional distribution, such as the moments , are often referred to by corresponding names such as the conditional mean and conditional variance .
However, the conditional probability P(A|B 1) = 1, P(A|B 2) = 0.12 ÷ (0.12 + 0.04) = 0.75, and P(A|B 3) = 0. On a tree diagram, branch probabilities are conditional on the event associated with the parent node. (Here, the overbars indicate that the event does not occur.) Venn Pie Chart describing conditional probabilities
This rule allows one to express a joint probability in terms of only conditional probabilities. [4] The rule is notably used in the context of discrete stochastic processes and in applications, e.g. the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities.
Conditional probabilities, conditional expectations, and conditional probability distributions are treated on three levels: discrete probabilities, probability density functions, and measure theory. Conditioning leads to a non-random result if the condition is completely specified; otherwise, if the condition is left random, the result of ...
In probability theory, regular conditional probability is a concept that formalizes the notion of conditioning on the outcome of a random variable. The resulting conditional probability distribution is a parametrized family of probability measures called a Markov kernel .
The conditional probability at any interior node is the average of the conditional probabilities of its children. The latter property is important because it implies that any interior node whose conditional probability is less than 1 has at least one child whose conditional probability is less than 1.
A measure is a Gibbs measure if the conditional probabilities it induces on each finite subsystem satisfy a consistency condition: if all degrees of freedom outside the finite subsystem are frozen, the canonical ensemble for the subsystem subject to these boundary conditions matches the probabilities in the Gibbs measure conditional on the ...