enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Provides many tasks from classification to QA, and various languages from English, Portuguese to Arabic. Appen : Off The Shelf and Open Source Datasets hosted and maintained by the company. These biological, image, physical, question answering, signal, sound, text, and video resources number over 250 and can be applied to over 25 different use ...

  3. Hugging Face - Wikipedia

    en.wikipedia.org/wiki/Hugging_Face

    On September 23, 2024, to further the International Decade of Indigenous Languages, Hugging Face teamed up with Meta and UNESCO to launch a new online language translator [14] built on Meta's No Language Left Behind open-source AI model, enabling free text translation across 200 languages, including many low-resource languages.

  4. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    That is, after pre-training, BERT can be fine-tuned with fewer resources on smaller datasets to optimize its performance on specific tasks such as natural language inference and text classification, and sequence-to-sequence-based language generation tasks such as question answering and conversational response generation. [12]

  5. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    A token is an integer that represents a character, or a short segment of characters. On the input side, the input text is parsed into a token sequence. Similarly, on the output side, the output tokens are parsed back to text. The module doing the conversion between texts and token sequences is a tokenizer.

  6. BLOOM (language model) - Wikipedia

    en.wikipedia.org/wiki/BLOOM_(language_model)

    BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) [1] [2] is a 176-billion-parameter transformer-based autoregressive large language model (LLM). The model, as well as the code base and the data used to train it, are distributed under free licences. [3]

  7. GPT-2 - Wikipedia

    en.wikipedia.org/wiki/GPT-2

    GPT-2's training corpus included virtually no French text; non-English text was deliberately removed while cleaning the dataset prior to training, and as a consequence, only 10MB of French of the remaining 40,000MB was available for the model to learn from (mostly from foreign-language quotations in English posts and articles). [2]

  8. XLNet - Wikipedia

    en.wikipedia.org/wiki/XLNet

    The XLNet was an autoregressive Transformer designed as an improvement over BERT, with 340M parameters and trained on 33 billion words.It was released on 19 June, 2019, under the Apache 2.0 license. [1]

  9. Latent Dirichlet allocation - Wikipedia

    en.wikipedia.org/wiki/Latent_Dirichlet_allocation

    STTM also includes six short text corpus for evaluation. STTM presents three aspects about how to evaluate the performance of the algorithms (i.e., topic coherence, clustering, and classification). Lecture that covers some of the notation in this article: LDA and Topic Modelling Video Lecture by David Blei or same lecture on YouTube