Search results
Results from the WOW.Com Content Network
Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space. A Hilbert space is a special case of a Banach space.
Kolmogorov had shown in the previous year that any function of several variables can be constructed with a finite number of three-variable functions. Arnold then expanded on this work to show that only two-variable functions were in fact required, thus answering Hilbert's question when posed for the class of continuous functions.
where H(D) is the space of holomorphic functions in D. Then L 2, h ( D ) is a Hilbert space: it is a closed linear subspace of L 2 ( D ), and therefore complete in its own right. This follows from the fundamental estimate, that for a holomorphic square-integrable function ƒ in D
The vector space of all continuous antilinear functions on H is called the anti-dual space or complex conjugate dual space of H and is denoted by ¯ ′ (in contrast, the continuous dual space of H is denoted by ′), which we make into a normed space by endowing it with the canonical norm (defined in the same way as the canonical norm on the ...
In mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set X into a vector space has a natural vector space structure given by pointwise addition and scalar multiplication.
For computer science, in statistical learning theory, a representer theorem is any of several related results stating that a minimizer of a regularized empirical risk functional defined over a reproducing kernel Hilbert space can be represented as a finite linear combination of kernel products evaluated on the input points in the training set data.
Here we are using Hilbert series of filtered algebras, and the fact that the Hilbert series of a graded algebra is also its Hilbert series as filtered algebra. Thus R 0 {\displaystyle R_{0}} is an Artinian ring , which is a k -vector space of dimension P (1) , and Jordan–Hölder theorem may be used for proving that P (1) is the degree of the ...
In the case where the space is a space of functions, the functional is a "function of a function", [6] and some older authors actually define the term "functional" to mean "function of a function". However, the fact that X {\displaystyle X} is a space of functions is not mathematically essential, so this older definition is no longer prevalent.