enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space. A Hilbert space is a special case of a Banach space.

  3. Hilbert's thirteenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_thirteenth_problem

    Kolmogorov had shown in the previous year that any function of several variables can be constructed with a finite number of three-variable functions. Arnold then expanded on this work to show that only two-variable functions were in fact required, thus answering Hilbert's question when posed for the class of continuous functions.

  4. Bergman kernel - Wikipedia

    en.wikipedia.org/wiki/Bergman_kernel

    where H(D) is the space of holomorphic functions in D. Then L 2, h ( D ) is a Hilbert space: it is a closed linear subspace of L 2 ( D ), and therefore complete in its own right. This follows from the fundamental estimate, that for a holomorphic square-integrable function ƒ in D

  5. Fundamental theorem of Hilbert spaces - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    The vector space of all continuous antilinear functions on H is called the anti-dual space or complex conjugate dual space of H and is denoted by ¯ ′ (in contrast, the continuous dual space of H is denoted by ′), which we make into a normed space by endowing it with the canonical norm (defined in the same way as the canonical norm on the ...

  6. Function space - Wikipedia

    en.wikipedia.org/wiki/Function_space

    In mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set X into a vector space has a natural vector space structure given by pointwise addition and scalar multiplication.

  7. Representer theorem - Wikipedia

    en.wikipedia.org/wiki/Representer_theorem

    For computer science, in statistical learning theory, a representer theorem is any of several related results stating that a minimizer of a regularized empirical risk functional defined over a reproducing kernel Hilbert space can be represented as a finite linear combination of kernel products evaluated on the input points in the training set data.

  8. Hilbert series and Hilbert polynomial - Wikipedia

    en.wikipedia.org/wiki/Hilbert_series_and_Hilbert...

    Here we are using Hilbert series of filtered algebras, and the fact that the Hilbert series of a graded algebra is also its Hilbert series as filtered algebra. Thus R 0 {\displaystyle R_{0}} is an Artinian ring , which is a k -vector space of dimension P (1) , and Jordan–Hölder theorem may be used for proving that P (1) is the degree of the ...

  9. Functional (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Functional_(mathematics)

    In the case where the space is a space of functions, the functional is a "function of a function", [6] and some older authors actually define the term "functional" to mean "function of a function". However, the fact that X {\displaystyle X} is a space of functions is not mathematically essential, so this older definition is no longer prevalent.