Search results
Results from the WOW.Com Content Network
The atmosphere of Earth is composed of a layer of gas mixture that surrounds the Earth's planetary surface (both lands and oceans), known collectively as air, with variable quantities of suspended aerosols and particulates (which create weather features such as clouds and hazes), all retained by Earth's gravity. The atmosphere serves as a ...
The composition of Earth's atmosphere is determined by the by-products of the life that it sustains. Dry air (mixture of gases) from Earth's atmosphere contains 78.08% nitrogen, 20.95% oxygen, 0.93% argon, 0.04% carbon dioxide, and traces of hydrogen, helium, and other "noble" gases (by volume), but generally a variable amount of water vapor is ...
Earth's atmosphere has no definite boundary, gradually becoming thinner and fading into outer space. [218] Three-quarters of the atmosphere's mass is contained within the first 11 km (6.8 mi) of the surface; this lowest layer is called the troposphere. [219] Energy from the Sun heats this layer, and the surface below, causing expansion of the air.
The atmosphere envelops the earth and extends hundreds of kilometres from the surface. It consists mostly of inert nitrogen (78%), oxygen (21%) and argon (0.9%). [4] Some trace gases in the atmosphere, such as water vapour and carbon dioxide, are the gases most important for the workings of the climate system, as they are greenhouse gases which allow visible light from the Sun to penetrate to ...
From Earths surface to the top of the stratosphere (50 km) is just under 1% of Earth's radius. The mesosphere (/ ˈ m ɛ s ə s f ɪər, ˈ m ɛ z-, ˈ m iː s ə-,-z ə-/; [1] from Ancient Greek μέσος (mésos) 'middle' and -sphere) is the third layer of the atmosphere, directly above the stratosphere and directly below the thermosphere.
The Earth's atmosphere is the origin of the weather phenomena studied in meteorology. Atmospheric composition, temperature, and pressure vary across a series of distinct sublayers including the troposphere and stratosphere. The properties of Earth's atmosphere vary by altitude across a series of distinct layers. atmospheric boundary layer (ABL)
The density of the Earth's atmosphere decreases nearly exponentially with altitude. The total mass of the atmosphere is M = ρ A H ≃ 1 kg/cm 2 within a column of one square centimeter above the ground (with ρ A = 1.29 kg/m 3 the atmospheric density on the ground at z = 0 m altitude, and H ≃ 8 km the average atmospheric scale height).
Convection cells can form in any fluid, including the Earth's atmosphere (where they are called Hadley cells), boiling water, soup (where the cells can be identified by the particles they transport, such as grains of rice), the ocean, or the surface of the Sun. The size of convection cells is largely determined by the fluid's properties.